ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ (часть 3)

ТРИГОНОМЕТРИЧЕСКИЕ СИСТЕМЫ

9. Иррациональные тригонометрические уравнения

При решении таких уравнений используются те же приемы, что и при решении алгебраических иррациональных уравнений. Особое внимание требуется обращать на дополнительные ограничения на допустимые значения неизвестного (самая распространенная ошибка в задачах этого типа — включение в ответ посторонних корней).

Пример 1.
$$\sqrt{\frac{16}{25} + \cos^2 2x} = \sin 2x - \frac{1}{5}$$
.

ОДЗ задается неравенством: $\sin 2x - \frac{1}{5} \ge 0$, $\sin 2x \ge \frac{1}{5}$. Возведем обе части в квадрат:

$$\frac{16}{25} + \cos^2 2x = \sin^2 2x - \frac{2}{5}\sin 2x + \frac{1}{25}, \ \frac{16}{25} + 1 - \sin^2 2x = \sin^2 2x - \frac{2}{5}\sin 2x + \frac{1}{25}.$$

Замена
$$t = \sin 2x \left(\frac{1}{5} \le t \le 1\right)$$
 приводит к уравнению $\frac{16}{25} + 1 - t^2 = t^2 - \frac{2}{5}t + \frac{1}{25}$,

$$5t^2-t-4=0$$
, $t_1=1$, $t_2=-\frac{4}{5}<\frac{1}{5}$ – посторонний корень. Обратная замена: $\sin 2x=1$,

$$x = \frac{p}{4} + pn.$$

Otbet:
$$\frac{p}{4} + pn$$
.

Пример 2.
$$\sqrt{1+\sin 6x} = 3-2(\sin 3x + \cos 3x)$$
.

Обратим внимание на то, что подкоренное выражение представляет собой полный квадрат: $1 + \sin 6x = (\sin 3x + \cos 3x)^2$, следовательно, $\sqrt{1 + \sin 6x} = |\sin 3x + \cos 3x|$. Сделаем замену: $t = \sin 3x + \cos 3x$, тогда |t| = 3 - 2t.

A)
$$\begin{cases} t \ge 0 \\ t = 3 - 2t \end{cases} \Rightarrow t = 1.$$

Б)
$$\begin{cases} t < 0 \\ -t = 3 - 2t \end{cases} \Rightarrow t = 3$$
 - посторонний корень (не соответствует условию раскрытия модуля).

Итак,
$$\sin 3x + \cos 3x = 1$$
, $\frac{1}{\sqrt{2}}\sin 3x + \frac{1}{\sqrt{2}}\cos 3x = \frac{1}{\sqrt{2}}$, $\sin \left(3x + \frac{p}{4}\right) = \frac{1}{\sqrt{2}}$,

$$x = -\frac{p}{12} + (-1)^n \frac{p}{12} + \frac{pn}{3}.$$

Otbet:
$$-\frac{p}{12} + (-1)^n \frac{p}{12} + \frac{pn}{3}$$
.

Пример 3.
$$(\cos 2x + 7\cos x - 3)\sqrt{tgx + \frac{1}{99}} = 0.$$

Ограничение на ОДЗ: $tg x + \frac{1}{99} \ge 0$, то есть $tg x \ge -\frac{1}{99}$. Учитывая это условие,

приравняем каждый множитель к нулю.

A)
$$\cos 2x + 7\cos x - 3 = 0$$
, $2\cos^2 x - 1 + 7\cos x - 3 = 0$, $t = \cos x$, $2t^2 + 7t - 4 = 0$,

$$t_1=rac{1}{2},\ t_2=-4<-1-$$
 посторонний корень. Следовательно, $\begin{cases} \cos x=rac{1}{2}\\ tgx\geq -rac{1}{99} \end{cases}$. Этим условиям

удовлетворяют углы вида $\frac{p}{3} + 2pn$ (вторая группа решений тригонометрического

уравнения: $-\frac{p}{3} + 2pn$ определяет углы, лежащие в четвертой четверти, тангенс которых

равен
$$-\sqrt{3} < -\frac{1}{99}$$
).

Б)
$$tgx + \frac{1}{99} = 0$$
, $tgx = -\frac{1}{99}$, $x = -arctg \frac{1}{99} + pn$.

Otbet:
$$\frac{p}{3} + 2pn$$
; $-arctg \frac{1}{99} + pn$.

10. Тригонометрические уравнения с модулями.

Вновь отметим, что для решения таких уравнений применяются те же приемы, что и для алгебраических уравнений с модулями.

Пример 4. $\sin 3x + |\sin x| = 0$.

A) $\sin x \ge 0$, $\sin 3x + \sin x = 0$, $2\sin 2x \cos x = 0$, $4\sin x \cos^2 x = 0$.

1) $\sin x = 0$ $x = \pi n$

2)
$$\begin{cases} \cos x = 0 \\ \sin x \ge 0 \end{cases} \Rightarrow x = \frac{p}{2} + 2pn.$$

Б) $\sin x < 0$, $\sin 3x - \sin x = 0$, $2\sin x \cos 2x = 0$, $2\sin x (1 - 2\sin^2 x) = 0$.

1) $\sin x = 0$ – не соответствует условию раскрытия модуля.

2)
$$\begin{cases} 1 - 2\sin^2 x = 0 \\ \sin x < 0 \end{cases} \Rightarrow \sin x = -\frac{\sqrt{2}}{2}, \quad x = (-1)^{n+1} \frac{p}{4} + pn.$$

Otbet:
$$pn$$
; $\frac{p}{2} + 2pn$; $(-1)^{n+1} \frac{p}{4} + pn$.

Пример 5. $|\sin 12x| + |\sin 18x| = 0$.

Сумма модулей может равняться нулю только в том случае, если при одном и том же значении x оба подмодульных выражения равны нулю. Следовательно, нужно найти

общие корни двух уравнений:
$$\begin{cases} \sin 12x = 0 \\ \sin 18x = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{pn}{12} \\ x = \frac{pk}{18} \end{cases} \quad (n, k \in \mathbb{Z}).$$
 Принципиально важно

то, что в решениях указаны разные целочисленные параметры. Для общих корней должно выполняться равенство $\frac{pn}{12} = \frac{pk}{18}$, откуда $n = \frac{2k}{3}$. Поскольку n – целое число, дробь $\frac{2k}{3}$ должна быть сократимой, а это возможно только если k кратно трем, то есть k = 3m, $m \in \mathbb{Z}$. Тогда решение уравнения можно записать так:

$$x = \frac{p \cdot 3m}{18} = \frac{pm}{6}.$$
Other: $\frac{pm}{6}$.

11. Тригонометрические уравнения с конечным числом корней.

Эти уравнения очень необычны, и конечное число решений связано с тем, что аргумент тригонометрической функции принимает значения из некоторого конечного промежутка.

Пример 6.
$$\sin \frac{5}{25x^2 + 1} = 0.$$

Найдем множество значений функции $f(x) = \frac{5}{25x^2 + 1}$. Очевидно, что f(x) > 0.

Исследуем ее на экстремум. $f'(x) = -\frac{250x}{(25x^2+1)} = 0$ при x = 0 – найдена критическая точка. Слева от нее f'(x) > 0, справа f'(x) < 0, то есть это точка максимума. Так как он является единственным экстремумом, то при x = 0 функция принимает свое наибольшее значение: f(0) = 5. Следовательно, $0 < \frac{5}{25x^2+1} \le 5$.

Решим простейшее тригонометрическое уравнение: $\frac{5}{25x^2+1}=pn$. Из предыдущего исследования получаем, что равенство возможно только при условии $0 < pn \le 5$, откуда $\begin{cases} 0 < n \le \frac{5}{p} \Rightarrow n = 1 \end{cases}$. Действительно, это единственное целочисленное решение такого $n \in \mathbb{Z}$

неравенства. Тогда
$$\frac{5}{25x^2+1}=p$$
, $x^2=\frac{5-p}{25p}$, $x=\pm\frac{1}{5}\sqrt{\frac{5-p}{p}}$. Ответ: $\pm\frac{1}{5}\sqrt{\frac{5-p}{p}}$.

ТРИГОНОМЕТРИЧЕСКИЕ СИСТЕМЫ

Вновь перед нами комбинированные задачи, в которых применяются известные из алгебры методы решения систем и способы решения тригонометрических уравнений. Важно помнить, что при решении системы ответ каждого простейшего уравнения должен записываться с новым целочисленным параметром, который может принимать любое возможное значение независимо от ранее введенных параметров.

Пример 7.
$$\begin{cases} \sin x \cos y = \frac{1}{4} \\ \cos x \sin y = \frac{1}{4} \end{cases}$$

Применим метод алгебраического сложения: перейдем к системе, уравнениями которой будут сумма и разность исходных уравнений.

$$\begin{cases} \sin x \cos y + \cos x \sin y = \frac{1}{2} \Rightarrow \begin{cases} \sin(x+y) = \frac{1}{2} \Rightarrow \begin{cases} x+y = (-1)^n \frac{p}{6} + pn \\ \sin(x-y) = 0 \end{cases} \end{cases} \Rightarrow \begin{cases} x+y = (-1)^n \frac{p}{6} + pn \\ x-y = pk \end{cases}$$

Вновь сложим и вычтем полученные уравнения:

$$\begin{cases} 2x = (-1)^n \frac{p}{6} + p(n+k) \\ 2y = (-1)^n \frac{p}{6} + p(n-k) \end{cases} \Rightarrow \begin{cases} x = (-1)^n \frac{p}{12} + \frac{p}{2}(n+k) \\ y = (-1)^n \frac{p}{12} + \frac{p}{2}(n-k) \end{cases}.$$

Otbet:
$$\begin{cases} x = (-1)^n \frac{p}{12} + \frac{p}{2}(n+k) \\ y = (-1)^n \frac{p}{12} + \frac{p}{2}(n-k) \end{cases}.$$

Пример 8.
$$\begin{cases} \frac{4}{\sin^2 2x} - \frac{3}{\sin^2 2y} = 2\\ x + y = \frac{p}{2} \end{cases}$$
.

Используем подстановку из второго уравнения: $\begin{cases} y = \frac{p}{2} - x \\ \frac{4}{\sin^2 2x} - \frac{3}{\sin^2 (p - 2x)} = 2 \end{cases}$. Применим

формулу приведения: $\frac{4}{\sin^2 2x} - \frac{3}{\sin^2 2x} = 2$, $\frac{1}{\sin^2 2x} = 2$, $\sin^2 2x = \frac{1}{2}$, $\frac{1 - \cos 4x}{2} = \frac{1}{2}$, $\cos 4x = 0$, $x = \frac{p}{8} + \frac{pn}{4}$, $y = \frac{p}{2} - x = \frac{3p}{8} - \frac{pn}{4}$.

OTBET:
$$\begin{cases} x = \frac{p}{8} + \frac{pn}{4} \\ y = \frac{3p}{8} - \frac{pn}{4} \end{cases}$$

Пример 9.
$$\begin{cases} \cos^2 4x + \cos^2 2y = 1 \\ \cos^2 4x + \cos^2 4y = 1 \end{cases}$$

Вычтем первое уравнение из второго и применим формулу $\cos^2 2y = \frac{1 + \cos 4y}{2}$

$$\cos^2 4y - \frac{1 + \cos 4y}{2} = 0$$
, $t = \cos 4y$: $t^2 - \frac{1 + t}{2} = 0$, $2t^2 - t - 1 = 0$, $t_1 = 1$, $t_2 = -\frac{1}{2}$.

A) $\cos 4y = 1$, тогда из второго уравнения $\cos^2 4x = 0$, то есть $\cos 4x = 0$. Получена система

двух простейших уравнений:
$$\begin{cases} \cos 4x = 0 \\ \cos 4y = 1 \end{cases} \Rightarrow \begin{cases} x = \frac{p}{8} + \frac{pn}{4} \\ y = \frac{pk}{2} \end{cases} \quad (n, k \in \mathbb{Z}).$$

Б) $\cos 4y = -\frac{1}{2} \Rightarrow \cos^2 4x = \frac{3}{4} \Rightarrow \frac{1 + \cos 8x}{2} = \frac{3}{4} \Rightarrow \cos 8x = \frac{1}{2}$. Решая полученную систему простейших уравнений, находим вторую группу корней:

$$\begin{cases}
\cos 8x = \frac{1}{2} \\
\cos 4y = -\frac{1}{2}
\end{cases} \Rightarrow \begin{cases}
x = \pm \frac{p}{24} + \frac{pn}{4} \\
y = \pm \frac{p}{6} + \frac{pk}{2}
\end{cases}$$

Еще раз напомним, что решение каждого уравнения системы содержит свой целочисленный параметр (решением будет каждая пара чисел, заданная полученными формулами, в которых мы можем задавать n и k любые целые значения, не обязательно одинаковые).

Otbet:
$$\begin{cases} x = \frac{p}{8} + \frac{pn}{4} \\ y = \frac{pk}{2} \end{cases}; \quad \begin{cases} x = \pm \frac{p}{24} + \frac{pn}{4} \\ y = \pm \frac{p}{6} + \frac{pk}{2} \end{cases}.$$

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1.
$$\sqrt{\sin^4 x + \cos^4 x} + \sin x - \cos x = 0$$

2.
$$\sqrt{tg^2x+1} = 6 - \frac{2}{\cos x}$$

3.
$$(\cos 2x + 3\cos x - 1)\sqrt{\sin x + \frac{1}{100}} = 0$$

$$4. |\sin x| = \sin x + 2\cos x$$

5.
$$|\sin 10 x| + |\sin 4x| = 0$$

6.
$$\sin \sqrt{px - x^2} = \frac{1}{\sqrt{2}}$$

7.
$$\sin \frac{2x}{x^2 + 1} = \frac{1}{2}$$

8.
$$\begin{cases} \sin x \sin y = \frac{\sqrt{3}}{4} \\ \cos x \cos y = \frac{\sqrt{3}}{4} \end{cases}$$

9.
$$\begin{cases} x + y = -\frac{p}{6} \\ \sin 2x + \sin 2y = 5 - 4\cos^2(x - y) \end{cases}$$
10.
$$\begin{cases} 4\sin y - 6\sqrt{2}\cos x = 5 + 4\cos^2 y \\ \cos 2x = 0 \end{cases}$$

10.
$$\begin{cases} 4\sin y - 6\sqrt{2}\cos x = 5 + 4\cos^2 y \\ \cos 2x = 0 \end{cases}$$

Ответы

1)
$$(-1)^n \frac{p}{4} + \frac{p}{4} + pn$$
 2) $\pm \frac{p}{3} + 2pn$ 3) $\frac{p}{3} + 2pn$; $(-1)^{n+1} \arcsin \frac{1}{100} + pn$

4)
$$-\frac{p}{4} + pn$$
; pn 5) $\frac{pn}{2}$ 6) $\frac{p}{4}(2 \pm \sqrt{3})$ 7) $\frac{6 \pm \sqrt{36 - p^2}}{p}$

$$4 4 7 3 7 3 7 100$$

$$4) -\frac{p}{4} + pn; \ pn 5) \frac{pn}{2} 6) \frac{p}{4} (2 \pm \sqrt{3}) 7) \frac{6 \pm \sqrt{36 - p^2}}{p}$$

$$8) \begin{cases} x = \pm \frac{p}{12} + \frac{p}{4} + \frac{p}{2} (n+k) \\ y = \pm \frac{p}{12} + \frac{p}{4} + \frac{p}{2} (n-k) \end{cases} 9) \begin{cases} x = \frac{5p}{12} + pn \\ y = -\frac{7p}{12} - pn \end{cases} 10) \begin{cases} x = \pm \frac{3p}{4} + 2pn \\ y = (-1)^k \frac{p}{6} + pk \end{cases}$$