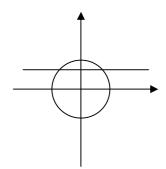
Занятие 11

ТРИГОНОМЕТРИЧЕСКИЕ НЕРАВЕНСТВА

Решением тригонометрического неравенства обычно является набор промежутков, границы которых можно задать общей формулой с использованием целочисленного параметра. Для определения границ очень удобно применять тригонометрическую окружность.

Пример 1.
$$\sin\left(3x - \frac{p}{5}\right) \le \frac{1}{2}$$
.

Решим сначала простейшее тригонометрическое неравенство $\sin t \le \frac{1}{2}$, где $t = 3x - \frac{p}{5}$.



Прямая $y=\frac{1}{2}$ делит тригонометрическую окружность на две дуги. Решениям неравенства соответствуют точки на нижней дуге, ординаты которых не больше ½ . Поэтому в пределах от $\frac{p}{2}$ до $\frac{5p}{2}$ решение имеет вид: $\frac{5p}{6} \le t \le \frac{13p}{6}$. Границы следующего промежутка решений можно получить отсюда, изменив каждую границу на $2\pi n$:

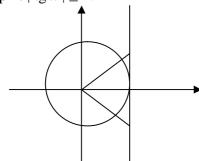
 $\frac{5p}{6} + 2pn \le t \le \frac{13p}{6} + 2pn$. Сделав обратную замену, получим двойное неравенство для x:

$$\frac{5p}{6} + 2pn \le 3x - \frac{p}{5} \le \frac{13p}{6} + 2pn, \quad \frac{5p}{6} + \frac{p}{5} + 2pn \le 3x \le \frac{13p}{6} + \frac{p}{5} + 2pn,$$

$$\frac{31p}{90} + \frac{2pn}{3} \le x \le \frac{71p}{90} + \frac{2pn}{3}.$$

Otbet:
$$\frac{31p}{90} + \frac{2pn}{3} \le x \le \frac{71p}{90} + \frac{2pn}{3}$$
.

Пример 2. $| \text{ tg } x | \ge 1.$



Наименьший положительный период тангенса равен π , поэтому достаточно найти решение неравенства на интервале $\left(-\frac{p}{2};\frac{p}{2}\right)$, а затем прибавить к границам πn . Раскрыв

модуль, превратим неравенство в совокупность двух неравенств: $\begin{bmatrix} tgx \ge 1 \\ tgx \le -1 \end{bmatrix}$

Дуги окружности, соответствующие их решениям, имеют вид: $\left(-\frac{p}{2}; -\frac{p}{4}\right] \cup \left[\frac{p}{4}; \frac{p}{2}\right)$.

Обращаем внимание на то, что точки $\pm \frac{p}{2}$ не входят в решение, поскольку при этих значениях аргумента тангенс не существует. Учитывая периодичность, находим окончательное решение: $-\frac{p}{2} + pn < x \le -\frac{p}{4} + pn; \ \frac{p}{4} + pn \le x < \frac{p}{2} + pn.$

Otbet:
$$-\frac{p}{2} + pn < x \le -\frac{p}{4} + pn$$
; $\frac{p}{4} + pn \le x < \frac{p}{2} + pn$.

В более сложных неравенствах для их сведения к простейшим применяются в основном те же приемы, что и при решении уравнений.

Пример 3. $\cos 2x - (2 + \sqrt{2}) \sin x - 1 - \sqrt{2} \le 0$.

Представим $\cos 2x = 1 - 2\sin^2 x$ и сделаем замену: $t = \sin x$. Тогда для t требуется решить

систему неравенств
$$\begin{cases} -1 \le t \le 1 \\ 2t^2 + (2+\sqrt{2})t + \sqrt{2} \ge 0 \end{cases} \Rightarrow \begin{cases} -1 \le t \le 1 \\ t \le -1 \\ t \ge -\frac{\sqrt{2}}{2} \end{cases} \Rightarrow t = -1, \ -\frac{\sqrt{2}}{2} \le t \le 1.$$

Обратная замена приводит к уравнению $\sin x = -1$, откуда $x = -\frac{p}{2} + 2pn$, и неравенству

$$\sin x \ge -\frac{\sqrt{2}}{2}$$
, решение которого: $-\frac{p}{4} + 2pn \le x \le \frac{5p}{4} + 2pn$.

Otbet:
$$x = -\frac{p}{2} + 2pn, -\frac{p}{4} + 2pn \le x \le \frac{5p}{4} + 2pn.$$

Пример 4. $2\sin^3 2x + 3\sin 2x \le \operatorname{tg} x + \operatorname{ctg} x$.

Используем то, что $\lg x + \operatorname{ctg} x = \frac{2}{\sin 2x}$ (см. занятие 9), и сделаем замену: $t = \sin 2x$.

Неравенство для t имеет вид: $2t^3 + 3t \le \frac{2}{t}$, $\frac{2t^4 + 3t^2 - 2}{t} \le 0$, $\frac{(t^2 + 2)(2t^2 - 1)}{t} \le 0$.

Методом интервалов находим решение: $t \le -\frac{\sqrt{2}}{2}$, $0 < t \le \frac{\sqrt{2}}{2}$. Проводим обратную замену и решаем полученные тригонометрические неравенства:

A)
$$\sin 2x \le -\frac{\sqrt{2}}{2}$$
, $\frac{5p}{4} + 2pn \le 2x \le \frac{7p}{4} + 2pn$, $\frac{5p}{8} + pn \le x \le \frac{7p}{8} + pn$.

$$\text{E) } 0 < \sin 2x \le \frac{\sqrt{2}}{2} \Rightarrow \begin{bmatrix} 2pn < 2x \le \frac{p}{4} + 2pn \\ \frac{3p}{4} + 2pn \le 2x < p + 2pn \end{bmatrix} \Rightarrow \begin{bmatrix} pn < x \le \frac{p}{8} + pn \\ \frac{3p}{8} + pn \le x < \frac{p}{2} + pn \end{bmatrix}.$$

Ответом будет объединение полученных промежутков.

Otbet:
$$\left(pn; \frac{p}{8} + pn\right] \cup \left[\frac{3p}{8} + pn\right] \cup \left[\frac{5p}{8} + pn; \frac{7p}{8} + pn\right]$$
.

Пример 5.
$$\frac{1-\cos 4x}{1+\cos 4x} \ge 7-6\sqrt{\frac{1}{\cos^2 2x}-1}$$
.

A)
$$\frac{1-\cos 4x}{1+\cos 4x} = \frac{2\sin^2 2x}{2\cos^2 2x} = tg^2 2x = |tg2x|^2$$
;

$$\text{ F) } \sqrt{\frac{1}{\cos^2 2x} - 1} = \sqrt{\frac{1 - \cos^2 2x}{\cos^2 2x}} = \sqrt{\frac{\sin^2 2x}{\cos^2 2x}} = |tg2x|.$$

Сделаем замену:
$$t = |\lg 2x|$$
:
$$\begin{cases} t \ge 0 \\ t^2 \ge 7 - 6t \end{cases} \Rightarrow \begin{cases} t \ge 0 \\ t^2 + 6t - 7 \ge 0 \end{cases} \Rightarrow \begin{cases} t \ge 0 \\ t \ge 1 \\ t \le -7 \end{cases} \Rightarrow t \ge 1.$$

$$-\frac{p}{4} + \frac{pn}{2} < x \le -\frac{p}{8} + \frac{pn}{2}; \ \frac{p}{8} + \frac{pn}{2} \le x < \frac{p}{4} + \frac{pn}{2}.$$

Otbet:
$$-\frac{p}{4} + \frac{pn}{2} < x \le -\frac{p}{8} + \frac{pn}{2}$$
; $\frac{p}{8} + \frac{pn}{2} \le x < \frac{p}{4} + \frac{pn}{2}$.

Пример 6.
$$|\sin x| + |\cos x| < \frac{\sqrt{3} + 1}{2}$$
.

Поскольку обе части неравенства неотрицательны, можно возвести их в квадрат:

$$\sin^2 x + 2 |\sin x \cos x| + \cos^2 x < \frac{2 + \sqrt{3}}{2}$$
, или $|\sin 2x| < \frac{\sqrt{3}}{2}$. Еще раз возведем обе части в

квадрат:
$$\sin^2 2x < \frac{3}{4}$$
, $\frac{1-\cos 4x}{2} < \frac{3}{4}$, $\cos 4x > -\frac{1}{2}$. Получено простейшее тригонометри-

ческое неравенство, решение которого:
$$-\frac{2p}{3} + 2pn < 4x < \frac{2p}{3} + 2pn$$
,

$$-\frac{p}{6} + \frac{pn}{2} < x < \frac{p}{6} + \frac{pn}{2}.$$

Otbet:
$$-\frac{p}{6} + \frac{pn}{2} < x < \frac{p}{6} + \frac{pn}{2}$$
.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1.
$$\left|\cos 2x + \frac{3}{4}\right| < \frac{1}{4}$$

3.
$$|\sin x| + |\cos x| < \frac{\sqrt{2}}{2}$$

5.
$$tg x - tg^2 x < 0$$

5.
$$tg x - tg^2 x < 0$$

7. $1 + \sin 2x > \sin x - \cos x$

9.
$$\left| \sin 5x - \frac{1}{4} \right| \ge \frac{3}{4}$$

2.
$$\cos 2x - (2 + \sqrt{3})\cos x + 1 + \sqrt{3} \ge 0$$

$$4. 9\sqrt{1 - \cos 12x} > 4\cos^4 3x + 4\sin^4 3x + 2$$

6.
$$\sin^2 x - 2\sin x \cos x + \cos^2 x \ge 0$$

8. $4\sin^2 x + 4\cos^2 x \le 2 - \cos 4x$

$$8. 4\sin^2 x + 4\cos^2 x \le 2 - \cos 4x$$

10.
$$2\sin^3 2x + 7\sin 2x \le 2(\operatorname{tg} x + \operatorname{ctg} x)$$

Ответы

1)
$$\left(\frac{p}{3} + pn; \frac{p}{2} + pn\right) \cup \left(\frac{p}{2} + pn; \frac{2p}{3} + pn\right)$$
 2) $\left[\frac{p}{6} + 2pn; \frac{11p}{6} + 2pn\right], x = 2pn$
3) $\left(-\frac{p}{12} + \frac{pn}{2}; \frac{p}{12} + \frac{pn}{2}\right)$ 4) $\left(\frac{p}{24} + \frac{pn}{6}; \frac{p}{8} + \frac{pn}{6}\right)$ 5) $\left(-\frac{p}{2} + pn; pn\right) \cup \left(\frac{p}{4} + pn; \frac{p}{2} + pn\right)$ 6) $\left(-\frac{p}{2} + pn; -\frac{p}{4} + pn\right) \cup \left[arctg3 + pn; \frac{p}{2} + pn\right)$ 7) $\left(\frac{p}{2} + 2pn; 2pn\right)$ 8) $\left[\frac{p}{6} + \frac{pn}{2}; \frac{p}{3} + \frac{pn}{2}\right]$ 9) $x = \frac{p}{10} + \frac{2pn}{5}, \left[\frac{7p}{30} + \frac{2pn}{5}; \frac{11p}{30} + \frac{2pn}{5}\right]$ 10) $\left(2pn; \frac{p}{4} + 2pn\right) \cup \left[\frac{3p}{4} + 2pn; p + 2pn\right) \cup \left[\frac{5p}{4} + 2pn; \frac{7p}{4} + 2pn\right]$