Занятие 12

ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Для выполнения заданий, связанных с обратными тригонометрическими функциями, нужно, во-первых, четко помнить определения этих понятий:

$$\emptyset \quad a = \arcsin a \Leftrightarrow \begin{cases} \sin a = a \\ -\frac{p}{2} \le a \le \frac{p}{2} \end{cases}$$

$$\emptyset \quad a = \arccos a \Leftrightarrow \begin{cases} \cos a = a \\ 0 \le a \le p \end{cases}$$

$$\emptyset \quad a = arcctga \Leftrightarrow \begin{cases} ctg \, a = a \\ 0 < a < p \end{cases}$$

Удобно при решении таких задач сделать замену (например, $\alpha = \arcsin x$) и работать с более привычным объектом – углом α , лежащем в первой или четвертой четверти тригонометрического круга, синус которого равен х. При этом выясняется, что задача намного проще, чем казалось вначале.

Пример 1. Вычислить $\cos(4 \operatorname{arctg} 5)$.

Пусть $\alpha = \arctan 5$, тогда tg $\alpha = 5$. Требуется найти $\cos 4\alpha$. Вычислим вначале $\cos 2\alpha$,

используя универсальную подстановку: $\cos 2a = \frac{1 - tg^2a}{1 + tg^2a} = \frac{1 - 25}{1 + 25} = -\frac{12}{13}$. Тогда

$$\cos 4a = 2\cos^2 2a - 1 = 2 \cdot \frac{144}{169} - 1 = \frac{119}{169}$$

Ответ: $\frac{119}{160}$.

Пример 2. Выразить через все обратные функции $\arcsin\left(-\frac{2}{3}\right)$

Пусть $a = \arcsin\left(-\frac{2}{3}\right)$. Угол α лежит в четвертой четверти, следовательно, $\cos a > 0$.

Найдем все тригонометрические функции угла a: $\cos a = \sqrt{1-\sin^2 a} = \sqrt{1-\frac{4}{0}} = \frac{\sqrt{5}}{2}$,

$$tga = -\frac{2}{3}: \frac{\sqrt{5}}{3} = -\frac{2}{\sqrt{5}}, \ ctga = -\frac{\sqrt{5}}{2}.$$
 В четвертой четверти находятся арктангенсы

отрицательных чисел, поэтому можно утверждать, что $a = arctg \left(-\frac{2}{\sqrt{5}} \right)$.

Но $a \neq \arccos \frac{\sqrt{5}}{3}$, так как арккосинусы положительных чисел принадлежат первой четверти. В силу четности косинуса $\cos(-a) = \cos a$, при этом $-a \in \left(0; \frac{p}{2}\right)$, то есть $-a = \arccos \frac{\sqrt{5}}{2}$, тогда $a = -\arccos \frac{\sqrt{5}}{3}$.

Арккотангенсы отрицательных чисел расположены во второй четверти. Например, $arcctg \left(-\frac{\sqrt{5}}{2}\right) = a + p \; , \; \text{следовательно}, \; a = arcctg \left(-\frac{\sqrt{5}}{2}\right) - p \; . \; \text{Таким образом, угол } \alpha$

выражен через все обратные функции.

Otbet:
$$\arcsin\left(-\frac{2}{3}\right) = -\arccos\frac{\sqrt{5}}{3} = arctg\left(-\frac{2}{\sqrt{5}}\right) = arcctg\left(-\frac{\sqrt{5}}{2}\right) - p$$
.

Пример 3. Найти arcsin(sin12).

Требуется найти угол, синус которого равен синусу угла в 12 радиан и который принадлежит промежутку $\left[-\frac{p}{2};\frac{p}{2}\right]$. Заметим, что $3\frac{1}{2}p < 12 < 4p$, поэтому $-\frac{p}{2} < 12 - 4p < 0$.

Поскольку $\sin 12 = \sin(4p + (12 - 4p)) = \sin(12 - 4p)$, угол $12 - 4\pi$ является искомым углом: его синус равен $\sin 12$, и он находится в области возможных значений арксинуса. Ответ: $\arcsin(\sin 12) = 12 - 4\pi$.

Пример 4. Вычислить
$$\sin\left(\arccos\frac{12}{13} - arctg7\right)$$

Введем два угла: $a = \arccos \frac{12}{13}$ и b = arctg7. Оба они лежат в первой четверти, значит,

все их тригонометрические функции положительны. Мы знаем, что $\cos a = \frac{12}{13}$, tgb = 7.

Требуется найти синус суммы этих углов, а для этого нужно знать их синусы и косинусы.

A)
$$\sin a = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$$
.

E)
$$\cos b = \frac{1}{\sqrt{1 + tg^2 b}} = \frac{1}{\sqrt{1 + 49}} = \frac{1}{5\sqrt{2}}; \sin b = tgb \cdot \cos b = \frac{7}{5\sqrt{2}}.$$

Тогда $\sin(a-b) = \sin a \cos b - \sin b \cos a = \frac{5}{13} \cdot \frac{1}{5\sqrt{2}} - \frac{7}{5\sqrt{2}} \cdot \frac{12}{13} = -\frac{79}{65\sqrt{2}}.$

Ответ:
$$-\frac{79}{65\sqrt{2}}$$
.

Пример 5. Решить уравнение $6\arcsin(x^2 - 5x + 3.5) + p = 0.$

Запишем уравнение в виде: $\arcsin(x^2 - 5x + 3.5) = -\frac{p}{6}$, откуда

$$x^{2} - 5x + 3.5 = \sin\left(-\frac{p}{6}\right) = -\frac{1}{2}, \quad x^{2} - 5x + 4 = 0, \quad x_{1} = 1, \quad x_{2} = 4.$$

Ответ: 1: 4.

Пример 6. Решить уравнение $2 \arcsin \frac{3x}{5} = \arcsin x$.

Зададим ОДЗ: $|\arcsin\frac{3x}{5}| \le \frac{p}{4}$, поскольку $|\arcsin x| \le \frac{p}{2}$. Отсюда следует, что

 $\left|\frac{3x}{5}\right| \le \frac{\sqrt{2}}{2}$. Пусть $a = \arcsin \frac{3x}{5}$, тогда $2a = \arcsin x$. Запишем уравнение в виде системы

$$\begin{cases} \sin a = \frac{3x}{5} \Rightarrow \frac{\sin a}{\sin 2a} = \frac{3}{5} \Rightarrow 5\sin a - 3\sin 2a = 0, \sin a(5 - 6\cos a) = 0. \end{cases}$$

A) $\sin a = 0$, $\frac{3x}{5} = 0$, x = 0.

E)
$$5 - 6\cos a = 0$$
, $\cos a = \frac{5}{6}$, $\sin a = \pm \sqrt{1 - \frac{25}{36}} = \pm \frac{\sqrt{11}}{6}$, $\frac{3x}{5} = \pm \frac{\sqrt{11}}{6}$, $x = \pm \frac{5\sqrt{11}}{18}$

(ограничение на ОДЗ выполняется).

Otbet: 0; $\pm \frac{5\sqrt{11}}{18}$.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Вычислить $\cos\left(\frac{1}{4} \arctan \frac{24}{7}\right)$
- 2. Выразить arcctg(-3) через все обратные функции.
- 3. Найти $\arcsin\left(\sin\frac{13p}{12}\right)$
- 4. Найти arccos(sin9).
- 5. Вычислить $\sin\left(3\arcsin\frac{1}{3}\right)$
- 6. Вычислить $\cos(\arcsin\frac{3}{5} + \arccos\left(-\frac{8}{17}\right)$.
- 7. Вычислить $tg\left(\frac{p}{4} arctg 4\right)$
- 8. Решить уравнение 4 arcsin x + arccos $x = \pi$.
- 9. Решить уравнение 5 arctg x + 3 arcctg $x = 2\pi$.
- 10. Решить уравнение 4 arctg $(x^2 2x 2) = \pi$.

Ответы

1)
$$\frac{3}{\sqrt{10}}$$
 2) $arcctg(-3) = p - arcsin \frac{1}{\sqrt{10}} = arccos \left(-\frac{3}{\sqrt{10}}\right) = p + arctg\left(-\frac{1}{3}\right)$

3)
$$-\frac{p}{12}$$
 4) $9-2.5 \pi$ 5) $\frac{23}{27}$ 6) $-\frac{77}{85}$ 7) $-\frac{3}{5}$ 8) $\frac{1}{2}$ 9) 1 10) -1 ; 3