О ВОССТАНОВЛЕНИИ РЕШЕНИЯ ЗАДАЧИ ДИРИХЛЕ В *d*-МЕРНОМ ШАРОВОМ ПОЯСЕ ПО НЕТОЧНЫМ ГРАНИЧНЫМ УСЛОВИЯМ

Е. А. БАЛОВА

Рассматривается задача оптимального восстановления решения задачи Дирихле в d-мерном шаровом поясе $D_1 = \{x \in \mathbb{R} : 0 < R < |x| < 1\}$ по конечному набору коэффициентов Фурье граничных функций, заданных с погрешностью в l_2 и l_∞ -нормах для $d \geq 3$ (задача для d=2 была рассмотрена в работе [5].) При решения были использованы методы и результаты, полученные в работах [1], [2], [3] и [4].

Рассматривается задача Дирихле

(1)
$$\Delta u = 0, \quad u_{|x|=R} = f_1(x'), \quad u_{|x|=1} = f_2(x'),$$

где

$$x' \in \mathbb{S}^{d-1} = \{ x' \in \mathbb{R}^d : |x'| = 1 \}, f_i(x') \in L_2(\mathbb{S}^{d-1}), i = 1, 2.$$

Функции $f_1(x'), f_2(x') \in L_2(\mathbb{S}^{d-1})$ заданы своими рядами Фурье

(2)
$$f_i(x') = \sum_{k=0}^{\infty} \sum_{j=1}^{a_k} c_{kj}^{(i)} Y_j^{(k)}(x'), i = 1, 2,$$

где $Y_j^{(k)}(x')$ —ортонормированный базис пространства $L_2(\mathbb{S}^{d-1})$ из сферических гармоник, a_k —размерность пространства \mathcal{H}_k гармоник порядка k. Функции $f_1(x')$ и f(x') заданы неточно. Предполагается, что известны векторы

$$\widetilde{f}_i^N = \{y_{kj}^{(i)}\}, \ k = 0, 1, \dots, k_0, \ j = 1, \dots, a_k, N = \sum_{k=0}^{k_0} a_k, \ i = 1, 2$$

такие, что

$$\|\widetilde{f}_i^N - f_i^N\|_{l_n^N} \le \delta_i, \delta_i > 0, f_i^N = \{c_{kj}^{(i)}\}, k = 0, 1, \dots, k_0, j = 1, \dots, a_k,$$

где $c_{kj}^{(i)}$ — коэффициенты Фурье функций $f_i(x'), i=1,2$ и для $a=(a_1,\dots,a_N)$

$$\|a\|_{l_p^N} = \begin{cases} \left(\sum_{k=1}^N |a_k|^p\right)^{1/p}, & 1 \le p < \infty, \\ \max_{k=1,\dots,N} |a_k|, & p = \infty. \end{cases}$$

Задача восстановления заключается в том, чтобы по информации о векторах \widetilde{f}_1^N , \widetilde{f}_2^N восстановить решение задачи (1). Предполагается, что функции $f_i(x')$, i=1,2 принадлежат обобщенному соболевскому классу

$$W_2^{\beta}(\mathbb{S}^{d-1}) = \left\{ f(\cdot) \in L_2(\mathbb{S}^{d-1}) : \| (-\Delta_S)^{\beta/2} f(\cdot) \|_{L_2(\mathbb{S}^{d-1})} \le 1 \right\},\,$$

где для $\beta>0$ оператор $(-\Delta_S)^{\beta/2}$ определяется равенством

$$(-\Delta_S)^{\beta/2}g(x') = \sum_{k=1}^{\infty} \Lambda_k^{\beta/2} \sum_{j=1}^{a_k} g_{kj} Y_j^{(k)}(x'),$$
$$g(x') = \sum_{k=0}^{\infty} \sum_{j=1}^{a_k} g_{kj} Y_j^{(k)}(x'),$$

а $\Lambda_k = k(k+d-2)$ — собственные числа оператора Бельтрами-Лапласа $(-\Delta_S)$. В качестве методов восстановления рассмотриваются всевозможные операторы $\varphi\colon l_p^N\times l_p^N\to L_2(D_1)$. Погрешностью оптимального восстановления называется величина

$$E_{N,p}(W_2^{\beta}(\mathbb{S}^{d-1}), \delta_1, \delta_2) = \inf_{\varphi \colon l_p^N \times l_p^N \to L_2(D_1)} \sup_{\substack{f_i \in W_2^{\beta}(\mathbb{S}^{d-1}), \\ i=1,2}} \sup_{\substack{\widetilde{f}_i^N \in l_p^N, \\ \|f_i^N - \widetilde{f}_i^N\|_{l_p^N} \le \delta_i, \ i=1,2}} \|u - \varphi(\widetilde{f}_1^N, \widetilde{f}_2^N)\|_{L_2(D_1)}.$$

а метод, на котором достигается нижняя грань, называется оптимальным.

В работе найдены значения погрешностей оптимального восстановления для p=2 и $p=\infty$, а также для этих случаев построены оптимальные методы, линейные относительно $\{y_{kj}^{(1)}\}$ и $\{y_{kj}^{(2)}\}$.

Список литературы

- [1] *Магарил-Ильяев Г. Г., Осипенко К. Ю.* Оптимальное восстановление функций и их производных по коэффициентам Фурье, заданным с погрешностью // Матем. сб. 2002. Т. 193. С. 79–100.
- [2] Магарил-Ильяев Г. Г., Ocunenкo K. Ю., Тихомиров В. М. On optimal recovery of heat equation solutions. In: Approximation Theory: A volume dedicated to B. Bojanov (D. K. Dimitrov, G. Nikolov, and R. Uluchev, Eds.), 163–175, Sofia: Marin Drinov Academic Publishing House, 2004.
- [3] Осипенко К. Ю. О восстановлении решения задачи Дирихле по неточным исходным данным // Владикавказский мат. журн. 2004. Т. 6, вып. 4. С. 55–62
- [4] *Магарил-Ильяев Г. Г., Осипенко К. Ю.* Оптимальное восстановление функций и их производных по приближенной информации о спектре и неравенства для производных // Функ. анализ и его прил. 2003. Т. 37. С. 51–64.
- [5] Балова Е. А. Об оптимальном восстановлении решения задачи Дирихле в кольце // Владикавказский мат. журн. 2006. Т. 8, вып. 2. С.