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Abstract. We construct optimal methods of recovery of traces
of analytic functions from the Hardy space H2(Bn) on the sphere
of radius ρ using inaccurate information about their traces on the
spheres of radiuses r1 and r2, r1 < ρ < r2. We show that instead
of using the whole information about the trace on the sphere of
radius r1 we can use only its projection on a space of polynomials
given with the same accuracy. Moreover, we construct a collection
of optimal recovery methods.

1. Introduction

Let Bn stand for the unit ball in Cn,

Bn = { z = (z1, . . . , zn) ∈ Cn : |z|2 =
n∑

j=1

|zj|2 < 1 }.

Recall that the Hardy space H2(Bn) consists of all functions f such
that

‖f‖2
H2(Bn) = sup

0<r<1

∫

Sn−1

|f(rz)|2 dσ(z) < ∞,

where dσ(z) is the positive normalized rotationally invariant measure
on the unit sphere

Sn−1 = { z = (z1, . . . , zn) ∈ Cn : |z| = 1 }.
Suppose that for any f ∈ H2(Bn) we know traces of f on the spheres

r1Sn−1 and r2Sn−1 given with some accuracy. The problem is to recover
the trace of f on the sphere ρSn−1, r1 < ρ < r2.

More precisely, suppose that for any f ∈ H2(Bn) we know func-
tions yj ∈ L2(σrj

), j = 1, 2, where dσr(z) are the positive normalized
rotationally invariant measures on the sphere rSn−1, and

‖f(rjz)− yj(rjz)‖L2(σ) ≤ δj, j = 1, 2.
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A recovery algorithm (method, procedure, etc.) is an operator

m : L2(σr1)× L2(σr2) → L2(σρ).

At this point we impose no conditions on m. In particular, we require
m to be neither continuous, nor linear.

Given a recovery method m its accuracy is characterized by the max-
imal possible error

eρ(H
2(Bn), r1, r2, δ1, δ2,m)

= sup
f∈H2(Bn), yj∈L2(σrj ), j=1,2

‖f(rjz)−yj(rjz)‖L2(σ)≤δj , j=1,2

‖f(ρz)−m(y1, y2)(ρz)‖L2(σ).

We further introduce the optimal recovery error as

(1) Eρ(H
2(Bn), r1, r2, δ1, δ2)

= inf
m : L2(σr1)×L2(σr2 )→L2(σρ)

eρ(H
2(Bn), r1, r2, δ1, δ2,m).

A method m̂ such that

Eρ(H
2(Bn), r1, r2, δ1, δ2) = eρ(H

2(Bn), r1, r2, δ1, δ2, m̂)

is called an optimal recovery method.
Let

(λ̂1, λ̂2) =

(
r2
2 − ρ2

r2
2 − r2

1

(
ρ

r1

)2s

,
ρ2 − r2

1

r2
2 − r2

1

(
ρ

r2

)2s
)

,

if

(2)

(
r1

r2

)s+1

≤ δ1

δ2

<

(
r1

r2

)s

, s ∈ Z+,

and (λ̂1, λ̂2) = (0, 1), if δ1 ≥ δ2.
For α = (α1, . . . , αn) ∈ Zn

+ set |α| = α1 + . . . + αn, α! = α1! . . . αn!,
and zα = zα1

1 . . . zαn
n .

In [1] we obtained the following result

Theorem 1. The error of optimal recovery is given by

Eρ(H
2(Bn), r1, r2, δ1, δ2) =

√
λ̂1δ2

1 + λ̂2δ2
2

and the method

m̂(y1, y2)(z) =
∞∑

j=0

1

λ̂1r
2j
1 + λ̂2r

2j
2

∑

|α|=j

(λ̂1r
2j
1 c(1)

α + λ̂2r
2j
2 c(2)

α )zα,
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where

(3) c(k)
α =

(n + |α| − 1)!

n!α!r
|α|
k

∫

Sn−1

yk(rkz)zα dσ(z), k = 1, 2,

is optimal.

In this paper we construct a collection of optimal recovery methods
in the same problem. In particular, we show that there are methods

that use only a finite number of coefficients c
(1)
α and do not use some

first of coefficients c
(2)
α .

2. Main results

Let IN be the orthogonal projector of H2(Bn) on the space of poly-
nomials of degree N , that is,

INf(z) =
N∑

j=0

∑

|α|=j

cαzα,

if

f(z) =
∞∑

j=0

∑

|α|=j

cαzα.

Let IN be the orthogonal projector of H2(Bn) on the subspace of func-
tions from H2(Bn) which are orthogonal to all polynomials of degree
N . In other words, INf = f − INf . Put I∞f = f and I−1f = 0. Then
I−1f = f and I∞f = 0.

We begin with the following recovery problem. To recover the trace
f on ρSn−1 knowing inaccurate traces of INf on r1Sn−1 and IMf on
r2Sn−1. More precisely, we suppose that for any f ∈ H2(Bn) we know
functions yj ∈ L2(σrj

), j = 1, 2, where dσr(z) are the positive normal-
ized rotationally invariant measures on the sphere rSn−1, and

(4) ‖INf(r1z)− y1(r1z)‖L2(σ) ≤ δ1, ‖IMf(r2z)− y2(r2z)‖L2(σ) ≤ δ2.

Given a recovery method m : L2(σr1) × L2(σr2) → L2(σρ) we define
its error as follows

eN,M
ρ (H2(Bn), r1, r2, δ1, δ2,m)

= sup
f∈H2(Bn),

y1∈YN (f,r1,δ1), y2∈YM (f,r2,δ2)

‖f(ρz)−m(y1, y2)(ρz)‖L2(σ),

where

YN(f, r, δ) = { y ∈ L2(σr) : ‖INf(rz)− y(rz)‖L2(σ) ≤ δ },
Y M(f, r, δ) = { y ∈ L2(σr) : ‖IMf(rz)− y(rz)‖L2(σ) ≤ δ }.
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We define the optimal recovery error as

(5) EN,M
ρ (H2(Bn), r1, r2, δ1, δ2)

= inf
m : L2(σr1 )×L2(σr2 )→L2(σρ)

eN,M
ρ (H2(Bn), r1, r2, δ1, δ2,m).

A method m̂ such that

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) = eN,M

ρ (H2(Bn), r1, r2, δ1, δ2, m̂)

is called an optimal recovery method.
It is easy to see that for N = ∞ and M = −1 problem (5) coincides

with (1).
The main tool in the solution of optimal recovery problems is the

solution of the duality extremal problems. In our case this problem
has the form

(6) ‖f(ρz)‖2
L2(σ) → max, ‖INf(r1z)‖2

L2(σ) ≤ δ2
1,

‖IMf(r2z)‖2
L2(σ) ≤ δ2

2, f ∈ H2(Bn).

For every method m and for every f ∈ H2(Bn) such that
‖INf(r1z)‖L2(σ) ≤ δ1, ‖IMf(r2z)‖L2(σ) ≤ δ2, we have

2‖f(ρz)‖L2(σ) ≤ ‖f(ρz)−m(0, 0)‖L2(σ) + ‖ − f(ρz)−m(0, 0)‖L2(σ)

≤ 2eN,M
ρ (H2(Bn), r1, r2, δ1, δ2,m).

Hence, for every method m

eN,M
ρ (H2(Bn), r1, r2, δ1, δ2,m) ≥ sup

f∈H2(Bn)
‖INf(r1z)‖L2(σ)≤δ1

‖IMf(r2z)‖L2(σ)≤δ2

‖f(ρz)‖L2(σ).

Taking the infimum in m, we obtain

(7) EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) ≥ sup

f∈H2(Bn)
‖INf(r1z)‖L2(σ)≤δ1

‖IMf(r2z)‖L2(σ)≤δ2

‖f(ρz)‖L2(σ).

Note that if N < M , then taking f0(z) = AzN+1
1 with |A| → ∞ it is

easy to verify that the value in the right-hand side of (7) equals ∞.
Let

L(f, λ1, λ2) = −‖f(ρz)‖2
L2(σ) + λ1‖INf(r1z)‖2

L2(σ) + λ2‖IMf(r2z)‖2
L2(σ)

be the Lagrange function of problem (6). To construct optimal recovery
methods we need the following result.
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Theorem 2. Assume that N ≥ M ≥ −1 and there exist λ̂1, λ̂2 ≥ 0

and f̂ ∈ H2(Bn) admissible in (6) such that

(a) min
f∈H2(Bn)

L(f, λ̂1, λ̂2) = L(f̂ , λ̂1, λ̂2),

(b) λ̂1(‖IN f̂(r1z)‖2
L2(σ) − δ2

1) + λ̂2(‖IM f̂(r2z)‖2
L2(σ) − δ2

2) = 0.

Then the error of optimal recovery is given by

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) =

√
λ̂1δ2

1 + λ̂2δ2
2

and the method

m̂N,M(y1, y2)(z) =
M∑

j=0

∑

|α|=j

c(1)
α zα

+
N∑

j=M+1

1

λ̂1r
2j
1 + λ̂2r

2j
2

∑

|α|=j

(λ̂1r
2j
1 c(1)

α + λ̂2r
2j
2 c(2)

α )zα +
∞∑

j=N+1

∑

|α|=j

c(2)
α zα,

where c
(k)
α , k = 1, 2, are defined by (3), is optimal.

Proof. Set

S2 = λ̂1δ
2
1 + λ̂2δ

2.

Let f ∈ H2(Bn) be an admissible element in (6). Then

− ‖f(ρz)‖2
L2(σ) ≥ −‖f(ρz)‖2

L2(σ) + λ̂1(‖INf(r1z)‖2
L2(σ) − δ2

1)

+ λ̂2(‖IMf(r2z)‖2
L2(σ) − δ2

2) = L(f, λ̂1, λ̂2)− S2 ≥ L(f̂ , λ̂1, λ̂2)− S2

= −‖f̂(ρz)‖2
L2(σ) + λ̂1(‖IN f̂(r1z)‖2

L2(σ)−δ2
1)+ λ̂2(‖IM f̂(r2z)‖2

L2(σ)−δ2
2)

= −‖f̂(ρz)‖2
L2(σ).

Hence, f̂ is a solution of (6). The same arguments show that f̂ is a
solution of the extremal problem

(8) ‖f(ρz)‖2
L2(σ) → max, λ̂1‖INf(r1z)‖2

L2(σ) + λ̂2‖IMf(r2z)‖2
L2(σ)

≤ λ̂1δ
2
1 + λ̂2δ

2
2, f ∈ H2(Bn).

Since for every c ∈ C, L(cf, λ̂1, λ̂2) = |c|2L(f, λ̂1, λ̂2) we have

L(f̂ , λ̂1, λ̂2) = 0. Consequently,

‖f̂(ρz)‖2
L2(σ) = −L(f̂ , λ̂1, λ̂2) + S2 = S2.
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Thus we proved that

sup
f∈H2(Bn)

‖INf(r1z)‖L2(σ)≤δ1

‖IMf(r2z)‖L2(σ)≤δ2

‖f(ρz)‖L2(σ)

= sup
f∈H2(Bn)

bλ1‖INf(r1z)‖2
L2(σ)

+bλ2‖IMf(r2z)‖2
L2(σ)

≤bλ1δ2
1+bλ2δ2

2

‖f(ρz)‖L2(σ) = S,

and moreover,

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) ≥ S.

Now we obtain the lower bound. For any functions yk ∈ L2(σrk
),

k = 1, 2, consider the extremal problem

(9) λ̂1‖INf(r1z)− y1(r1z)‖2
L2(σ)

+ λ̂2‖IMf(r2z)− y2(r2z)‖2
L2(σ) → min, f ∈ H2(Bn).

Write yk(rkz), k = 1, 2,

yk(rkz) =
∞∑

j=0

rj
k

∑

|α|=j
α≥0

c(k)
α zα + ỹk(z),

where ỹk, k = 1, 2, are orthogonal to all holomorphic polynomials in
L2(σ). Then problem (9) may be written in the form

λ̂1

N∑
j=0

r2j
1 n!

(n + j − 1)!

∑

|α|=j

α!|fα − c(1)
α |2 + ‖y∗1‖2

L2(σ)

+ λ̂2

∞∑
j=M+1

r2j
2 n!

(n + j − 1)!

∑

|α|=j

α!|fα − c(2)
α |2 + ‖y∗2‖2

L2(σ) → min,

f ∈ H2(Bn),

where

y∗1(z) =
∞∑

j=N+1

rj
1

∑

|α|=j

c(1)
α zα + ỹ1(z), y∗2(z) =

M∑
j=0

rj
2

∑

|α|=j

c(2)
α zα + ỹ2(z).

It is easy to show that for all functions y1(r1z), y2(r2z) ∈ L2(σ) with

finite number of coefficients c
(k)
α 6= 0, k = 1, 2 (we denote this space of
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functions by P), the solution of this problem is

fy(z) =
M∑

j=0

∑

|α|=j

c(1)
α zα

+
N∑

j=M+1

1

λ̂1r
2j
1 + λ̂2r

2j
2

∑

|α|=j

(λ̂1r
2j
1 c(1)

α + λ̂2r
2j
2 c(2)

α )zα +
∞∑

j=N+1

∑

|α|=j

c(2)
α zα,

where y = (y1, y2). Now consider the linear space E = L2(σr1)×L2(σr2)
with the semi-inner product

(y1, y2)E = λ̂1(y
1
1, y

2
1)L2(σr1 ) + λ̂2(y

1
2, y

2
2)L2(σr2 ),

where y1 = (y1
1, y

1
2), y2 = (y2

1, y
2
2). Then (9) can be written in the form

(10) ‖f̃ − y‖2
E → min, f ∈ H2(Bn),

where f̃ = (INf, IMf). If fy is a solution of (10) it can be easily verified
that for all f ∈ H2(Bn)

(f̃y − y, f̃)E = 0.

Consequently,

‖f̃ − y‖2
E = ‖f̃ − f̃y‖2

E + ‖f̃y − y‖2
E.

Thus, for all f ∈ H2(Bn)

(11) ‖f̃ − f̃y‖2
E ≤ ‖f̃ − y‖2

E

= λ̂1‖INf(r1z)− y1(r1z)‖2
L2(σ) + λ̂2‖IMf(r2z)− y2(r2z)‖2

L2(σ).

Let f ∈ H2(Bn) and y ∈ E satisfies (4). Then for any ε > 0 there exists
y∗1(r1z), y∗2(r2z) ∈ P such that ‖yk(rkz) − y∗k(rkz)‖L2(σ) < ε, k = 1, 2.
Thus,

‖INf(r1z)− y∗1(r1z)‖L2(σ) ≤ ‖INf(r1z)− y1(r1z)‖L2(σ)

+ ‖y1(r1z)− y∗1(r1z)‖L2(σ) ≤ δ1 + ε

and

‖IMf(r2z)− y∗2(r2z)‖L2(σ) ≤ ‖IMf(r2z)− y2(r2z)‖L2(σ)

+ ‖y2(r2z)− y∗2(r2z)‖L2(σ) ≤ δ2 + ε.

Set g = f − fy∗ where y∗ = (y∗1, y
∗
2). Then (11) implies that

λ̂1‖INg(r1z)‖2
L2(σ) + λ̂2‖IMg(r2z)‖2

L2(σ) = ‖g̃‖2
E

≤ λ̂1(δ1 + ε)2 + λ̂2(δ2 + ε)2.
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We have the following estimate for the method m̂

‖f(ρz)− m̂(y1, y2)(ρz)‖L2(σ) ≤ ‖f(ρz)− m̂(y∗1, y
∗
2)(ρz)‖L2(σ)

+ ‖m̂(y1 − y∗1, y2 − y∗2)(ρz)‖L2(σ) ≤ ‖g(ρz)‖L2(σ) + Cε

(the value of constant C depends on λ̂1, λ̂2, r1, r2, and ρ but is not
significant for us).

Taking into account that for all C1, C2 > 0

sup
f∈H2(Bn)

bλ1‖INf(r1z)‖2
L2(σ)

+bλ2‖IMf(r2z)‖2
L2(σ)

≤C1

‖f(ρz)‖L2(σ)

=
C1

C2

sup
f∈H2(Bn)

bλ1‖INf(r1z)‖2
L2(σ)

+bλ2‖IMf(r2z)‖2
L2(σ)

≤C2

‖f(ρz)‖L2(σ),

we obtain

‖f(ρz)− m̂(y∗1, y
∗
2)(ρz)‖2

L2(σ) = ‖g(ρz)‖2
L2(σ)

≤ sup
f∈H2(Bn)

bλ1‖INf(r1z)‖2
L2(σ)

+bλ2‖IMf(r2z)‖2
L2(σ)

≤bλ1(δ1+ε)2+bλ2(δ2+ε)2

‖f(ρz)‖2
L2(σ)

=
S2 + ε2(λ̂1 + λ̂2)

S2
sup

f∈H2(Bn)
bλ1‖INf(r1z)‖2

L2(σ)
+bλ2‖IMf(r2z)‖2

L2(σ)
≤S2

‖f(ρz)‖2
L2(σ)

= S2 + ε2(λ̂1 + λ̂2).

Since ε > 0 is arbitrary we obtain

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) ≤ eN,M

ρ (H2(Bn), r1, r2, δ1, δ2, m̂) ≤ S.

This and (7) imply

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) = S

and m̂ is an optimal method. ¤

First we find the error of optimal recovery. We introduce the follow-
ing notation:

(12) s0 = (N + dαe)+, α = 1−
log

r2
2 − r2

1

ρ2 − r2
1

2 log
r2

ρ

,
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where dxe = inf{n ∈ Z : n ≥ x } is the ceiling function and (x)+ =
max{x, 0}, a(−1) = −1, for N ≥ 0

a(N) =

(
s0 + log

(
1−

(
ρ

r2

)2(N−s0+1)
) /(

2 log
ρ

r1

))

+

,

s1 =

⌈
log(δ2/δ1)

log(r2/r1)

⌉
, N̂ =

{
−dαe+ s1, δ2 > δ1,

0, δ2 ≤ δ1,

M̂ =

(
s1 − log

r2
2 − r2

1

r2
2 − ρ2

/(
2 log

ρ

r1

))

+

− 1.

For N ≥ M ≥ −1 consider the sets:

Σ1 = { (N, M) : a(N) ≤ M ≤ N , M ≥ 0} ,

Σ2 =
{

(N, M) : −1 ≤ M < a(N), N < N̂
}
∪ (−1,−1),

Σ3 =
{

(N,M) : −1 ≤ M ≤ M̂, N ≥ N̂
}

,

Σ4 =
{

(N, M) : M̂ < M < a(N), N ≥ N̂
}

.

Theorem 3. The error of optimal recovery is given by

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) =

√
λ̂1δ2

1 + λ̂2δ2
2,

where

λ̂1 =





(
ρ

r1

)2M

, (N,M) ∈ Σ1 ∪ Σ4,

(
ρ

r1

)2s0
(

1−
(

ρ

r2

)2(N−s0+1)
)

, (N,M) ∈ Σ2,

(
ρ

r1

)2(s1−1)
r2
2 − ρ2

r2
2 − r2

1

, (N,M) ∈ Σ3, δ2 > δ1,

0, (N,M) ∈ Σ3, δ2 ≤ δ1,

λ̂2 =





(
ρ

r2

)2(N+1)

, (N, M) ∈ Σ1 ∪ Σ2,
(

ρ

r2

)2(s1−1)
ρ2 − r2

1

r2
2 − r2

1

, (N, M) ∈ Σ3, δ2 > δ1,

1, (N, M) ∈ Σ3, δ2 ≤ δ1,(
ρ

r2

)2s2
(

1−
(

ρ

r1

)2(M−s2)
)

, (N, M) ∈ Σ4,
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and

(13) s2 = M +




log
r2
2 − r2

1

r2
2 − ρ2

2 log
ρ

r1


 .

Proof. In accordance with Theorem 2 we should find λ̂1, λ̂2, and f̂ ∈
H2(Bn) admissible in (6) which satisfy conditions (a) and (b). Assume
that f ∈ H2(Bn), then it can be represented in the form

f(z) =
∞∑

j=0

∑

|α|=j

cαzα.

Since monomials zα form an orthogonal system in H2(Bn) with

‖zα‖2
H2(Bn) =

n!α!

(n + |α| − 1)!
,

(see [2], sect. 1.4.9) we have

L(f, λ1, λ2) =
M∑

j=0

r2j
1

(
−

(
ρ

r1

)2j

+ λ1

)
bj

+
N∑

j=M+1

r2j
1

(
−

(
ρ

r1

)2j

+ λ1 + λ2

(
r2

r1

)2j
)

bj

+
∞∑

j=N+1

r2j
1

(
−

(
ρ

r1

)2j

+ λ2

(
r2

r1

)2j
)

bj,

where

bj =
n!

(n + j − 1)!

∑

|α|=j

α!|cα|2.

Consider the set of points on the plane R2

(14)





yj =

(
ρ

r1

)2j

,

xj =

(
r2

r1

)2j

,

j = 0, 1, . . . .

These points belong to the plot of concave function




y =

(
ρ

r1

)2t

,

x =

(
r2

r1

)2t

,

t ∈ [0,∞).
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Consequently, the piecewise linear function passing through the points
(14) is also concave. There exists the minimal integer number s0, 0 ≤
s0 ≤ N , such that all points (14) lie under the line passing through the
point (xs0 , ys0) with the slope equals yN+1/xN+1. The number s0 may
be formally defined as follows

s0 = min

{
s ∈ Z+ :

ys+1 − ys

xs+1 − xs

≤ yN+1

xN+1

}
.

It can be easily verified that this number may be also defined by (12).

Let y = λ̂1 + λ̂2x be the line

y − ys0 =
yN+1

xN+1

(x− xs0),

that is,

(15) λ̂1 =

(
ρ

r1

)2s0
(

1−
(

ρ

r2

)2(N−s0+1)
)

, λ̂2 =

(
ρ

r2

)2(N+1)

.

Then for all j ∈ Z+

−
(

ρ

r1

)2j

+ λ̂1 + λ̂2

(
r2

r1

)2j

≥ 0.

Assume that M ≥ 0 and
(

ρ

r1

)2M

≥ λ̂1.

It means that

M ≥
(

s0 + log

(
1−

(
ρ

r2

)2(N−s0+1)
)/(

2 log
ρ

r1

))

+

= a(N).

Then putting

λ̂′1 =

(
ρ

r1

)2M

we have

L(f, λ̂′1, λ̂2) ≥ 0

for all f ∈ H2(Bn). Consider the function

f̂(z) =
δ1

rM
1

√
(n + M − 1)!

n!M !
zM
1 +

δ2

rN+1
2

√
(n + N)!

n!(N + 1)!
zN+1
1 .
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It is easy to verify that f̂ ∈ H2(Bn) is admissible in (6) and satisfies

(b). Moreover, L(f̂ , λ̂′1, λ̂2) = 0. Hence condition (a) is also fulfilled.
Applying Theorem 2 we obtain that for (N,M) ∈ Σ1

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) =

√(
ρ

r1

)2M

δ2
1 +

(
ρ

r2

)2(N+1)

δ2
2.

Assume now that M = N = −1. Then for all f ∈ H2(Bn),

L(f, 0, 1) ≥ 0. For f̂(z) = δ2

‖I−1f̂(r1z)‖2
L2(σ) = 0, ‖I−1f̂(r2z)‖2

L2(σ) = δ2
2.

Thus from Theorem 2 we obtain that E−1,−1
ρ (H2(Bn), r1, r2, δ1, δ2) = δ2.

If δ2 ≤ δ1, then N̂ = 0 and Σ2 = (−1, 1). Suppose that δ2 > δ1. It is
easy to show that in this case

N̂ = min

{
N ∈ N :

δ2

δ1

≥
(

r2

r1

)s0
}

.

Assume that −1 ≤ M < a(N) and N < N̂ . Then
(

ρ

r1

)2M

< λ̂1

and for all f ∈ H2(Bn), L(f, λ̂1, λ̂2) ≥ 0. Consider the function

f̂(z) =
δ1

rs0
1

√
(n + s0 − 1)!

n!s0!
zs0
1 +

a

rN+1
2

√
(n + N)!

n!(N + 1)!
zN+1
1 ,

where a will be defined later. We have

‖IN f̂(r1z)‖2
L2(σ) = δ2

1, ‖IM f̂(r2z)‖2
L2(σ) =

(
r2

r1

)2s0

δ2
1 + a2.

Since N < N̂

δ2
2 −

(
r2

r1

)2s0

δ2
1 > 0

and we can choose the parameter a so that f̂ is admissible in (6) and
satisfies (b). Hence using Theorem 2 the case (M, N) ∈ Σ2 is proved.

Now assume that
δ2

δ1

≤
(

r2

r1

)s0

.

It means that N ≥ N̂ . Let us find s1 ≤ s0 from the condition

(16)

(
r2

r1

)s1−1

<
δ2

δ1

≤
(

r2

r1

)s1

.
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Hence

s1 =

⌈
log(δ2/δ1)

log(r2/r1)

⌉
.

Suppose that s1 ≥ 1. Consider the line, which passes through the

points (xs1−1, ys1−1) and (xs1 , ys1). It has the form y = λ̂1 + λ̂2x, where
now

(17) λ̂1 =

(
ρ

r1

)2(s1−1)
r2
2 − ρ2

r2
2 − r2

1

, λ̂2 =

(
ρ

r2

)2(s1−1)
ρ2 − r2

1

r2
2 − r2

1

.

In view of concavity of the piecewise linear function passing through
the points (14) for all these points

−yj + λ̂1 + λ̂2xj ≥ 0.

Since the values (
ρ

r2

)2(s−1)
ρ2 − r2

1

r2
2 − r2

1

decrease as s →∞ we have

λ̂2 ≥
(

ρ

r2

)2(s0−1)
ρ2 − r2

1

r2
2 − r2

1

≥
(

ρ

r2

)2(N+1)

.

Thus if M = −1 or M ≥ 0 and

(18) λ̂1 ≥
(

ρ

r1

)2M

,

then for all f ∈ H2(Bn), L(f, λ̂1, λ̂2) ≥ 0. Condition (18) can be
rewritten in the form

M ≤ s1 − 1−
log

r2
2 − r2

1

r2
2 − ρ2

2 log
ρ

r1

.

Consider the function

f̂(z) = a

√
(n + s1 − 2)!

n!(s1 − 1)!
zs1−1
1 + b

√
(n + s1 − 1)!

n!s1!
zs1
1 .

We want to find the parameters a and b from the conditions

(19) ‖IN f̂(r1z)‖2
L2(σ) = δ2

1, ‖IM f̂(r2z)‖2
L2(σ) = δ2

2.

It means that

a2r
2(s1−1)
1 + b2r2s1

1 = δ2
1,

a2r
2(s1−1)
2 + b2r2s1

2 = δ2
1.
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It is easy to verify that condition (16) allows to find such parameters.

Thus we constructed the function f̂ which is admissible in (6) and sat-
isfies (b). From Theorem 2 we obtain the value of the optimal recovery
error.

Now suppose that s1 < 1. It means that δ2 ≤ δ1. In this case

M̂ = −1. Then for all f ∈ H2(Bn), L(f, 0, 1) ≥ 0. For f̂(z) = δ2

‖IN f̂(r1z)‖2
L2(σ) = δ2

2 ≤ δ2
1, ‖I−1f̂(r2z)‖2

L2(σ) = δ2
2.

Thus from Theorem 2 we obtain that EN,−1
ρ (H2(Bn), r1, r2, δ1, δ2) = δ2.

Finally, consider the case when M̂ < M < a(N) and N ≥ N̂ (that

is, (N, M) ∈ Σ4). Let y = λ̂1 + λ̂2x be the tangent to the piecewise
linear function passing through the points (14) that passes through the
point (0, (ρ/r1)

2M). That is

λ̂1 =

(
ρ

r1

)2M

, λ̂2 =

(
ρ

r2

)2s2
(

1−
(

ρ

r1

)2(M−s2)
)

,

where s2 be the minimal number such that the tangent contains the
point (xs2 , ys2) from the set of points (14). Thus, s1 ≤ s2 ≤ s0. The
number s2 may be defined as the number satisfying the condition

ys2 − ys2−1

xs2 − xs2−1

>

ys2 −
(

ρ

r1

)2M

xs2

≥ ys2+1 − ys2

xs2+1 − xs2

.

It can be shown that s2 may be defined by (13). Again for all points
(14)

−yj + λ̂1 + λ̂2xj ≥ 0

and for all f ∈ H2(Bn), L(f, λ̂1, λ̂2) ≥ 0. Consider the function

f̂(z) = a

√
(n + M − 1)!

n!M !
zM
1 + b

√
(n + s2 − 1)!

n!s2!
zs2
1 .

Now to satisfy conditions (19) we have to choose a and b such that

a2r2M
1 + b2r2s2

1 = δ2
1,

b2r2s2
2 = δ2

2.

Taking into account (16) we have(
r1

r2

)s2

≤
(

r1

r2

)s1

≤ δ1

δ2

.

Hence we can find parameters a and b to satisfy (19). It remains to
use Theorem 2. ¤
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Now we construct a family of optimal recovery methods for the sets
Σj, j = 2, 3, 4. Put

(N ′,M ′) =





(N,M), (N,M) ∈ Σ1,

(N, a(N)), (N,M) ∈ Σ2,

(N̂ , M̂), (N,M) ∈ Σ3,

(a−1(M),M), (N,M) ∈ Σ4,

where
a−1(M) = min{N ∈ Z+ : a(N) ≥ M }.

Theorem 4. For all integer Ñ and M̃ such that N ′ ≤ Ñ ≤ N and

M ≤ M̃ ≤ M ′ the methods m̂ eN,fM(y1, y2) are optimal for problem (5).

Proof. Let f ∈ H2(Bn), y1 ∈ YN(f, r1, δ1), y2 ∈ Y M(f, r2, δ2), and

yk(rkz) =
∞∑

j=0

rj
k

∑

|α|=j
α≥0

c(k)
α zα + ỹk(z), k = 1, 2,

where ỹk, k = 1, 2, are orthogonal to all holomorphic polynomials in
L2(σ). Then

‖f(ρz)− m̂ eN,fM(y1, y2)(ρz)‖L2(σ) = ‖f(ρz)− m̂ eN,fM(y′1, y
′
2)(ρz)‖L2(σ),

where

y′1(z) =

eN∑
j=0

∑

|α|=j
α≥0

c(1)
α zα, y′2(z) =

∞∑

fM+1

∑

|α|=j
α≥0

c(2)
α zα.

Moreover, y′1 ∈ Y eN(f, r1, δ1), y′2 ∈ Y
fM(f, r2, δ2). Thus

eN,M
ρ (H2(Bn), r1, r2, δ1, δ2, m̂ eN,fM) ≤ e

eN,fM
ρ (H2(Bn), r1, r2, δ1, δ2, m̂ eN,fM).

From this inequality we have

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) ≤ eN,M

ρ (H2(Bn), r1, r2, δ1, δ2, m̂ eN,fM)

≤ e
eN,fM
ρ (H2(Bn), r1, r2, δ1, δ2, m̂ eN,fM) = E

eN,fM
ρ (H2(Bn), r1, r2, δ1, δ2).

Using the fact that

EN,M
ρ (H2(Bn), r1, r2, δ1, δ2) = E

eN,fM
ρ (H2(Bn), r1, r2, δ1, δ2)

we obtain that the methods m̂ eN,fM are optimal. ¤
Returning to problem (1) we obtain

Corollary 1. For all integer N and M such that N̂ ≤ N < ∞ and

−1 ≤ M ≤ M̂ the methods m̂N,M(y1, y2) are optimal for problem (1).
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Now we would like to consider the following question: is it possi-
ble to choose a best method in some sense among all these optimal
methods. Usually numerical algorithms (for instance, interpolation or
quadrature formulae) considered as good ones if they are precise for
some set of functions (for instance, subspaces of algebraic or trigono-
metric polynomials). In this connection one tries to make this set as
large as possible. For example, Gauss quadrature is constructed to
make the largest value of n so that all polynomials of degree at most
n are integrated precisely.

We say that a method m(y1, y2) is precise by first (second) argument
at a function f ∈ H2(Bn) for problem (5) if

m(INf, 0) = f (m(0, IMf) = f).

We say that a method m(y1, y2) is precise by first (second) argument
at a set W if it is precise by first (second) argument at all functions
from W .

It is easily seen that for all N ′ ≤ Ñ ≤ N and M ≤ M̃ ≤ M ′ the
methods m̂ eN,fM(y1, y2) are precise by first (second) argument at the

spaces PfM (P⊥eN), where PfM is the space of polynomials of degree at

most M̃ and P⊥eN is the space of functions from H2(Bn) orthogonal to
P eN .

Taking into account the arguments which were given above we obtain
that the method m̂N ′,bM ′c(y1, y2) is the best for problem (5) and the
method m̂ bN,cM(y1, y2) is the best for problem (1).
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