OPTIMAL RECOVERY AND GENERALIZED CARLSON INEQUALITY FOR WEIGHTS WITH SYMMETRY PROPERTIES

K. YU. OSIPENKO

Abstract

The paper concerns problems of the recovery of operators from noisy information in weighted L_{q}-spaces with homogeneous weights. A number of general theorems are proved and applied to finding exact constants in multidimensional Carlson type inequalities with several weights and problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the L_{p}-metric.

1. Introduction

Let T be a nonempty set, Σ be the σ-algebra of subsets of T, and μ be a nonnegative σ-additive measure on Σ. We denote by $L_{p}\left(T, \Sigma, \mu\right.$) (or simply $L_{p}(T, \mu)$) the set of all Σ-measurable functions with values in \mathbb{R} or in \mathbb{C} for which

$$
\begin{aligned}
\|x(\cdot)\|_{L_{p}(T, \mu)} & =\left(\int_{T}|x(t)|^{p} d \mu(t)\right)^{1 / p}<\infty, \quad 1 \leq p<\infty \\
\|x(\cdot)\|_{L_{\infty}(T, \mu)} & =\operatorname{vraisup}_{t \in T}|x(t)|<\infty, \quad p=\infty
\end{aligned}
$$

If $T \subset \mathbb{R}^{d}$ and $d \mu=d t, t \in \mathbb{R}^{d}$, we put $L_{p}(T)=L_{p}(T, \mu)$.
The Carlson inequality [3]

$$
\|x(t)\|_{L_{1}\left(\mathbb{R}_{+}\right)} \leq \sqrt{\pi}\|x(t)\|_{L_{2}\left(\mathbb{R}_{+}\right)}^{1 / 2}\|t x(t)\|_{L_{2}\left(\mathbb{R}_{+}\right)}^{1 / 2}, \quad \mathbb{R}_{+}=[0,+\infty)
$$

was generalized by many authors (see [4], [1], [2], [8], [9]). In [8] we found sharp constants for inequalities of the form

$$
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq K\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)}^{\gamma}\left\|w_{1}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}^{1-\gamma},
$$

where T is a cone in a linear space, $w(\cdot), w_{0}(\cdot)$, and $w_{1}(\cdot)$ are homogenous functions and $1 \leq q<p, r<\infty$ (for $T=\mathbb{R}^{d}$ the sharp inequality was obtained in [2]). This problem is closely related with the following extremal problem

$$
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \rightarrow \max , \quad\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)} \leq \delta, \quad\left\|w_{1}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1
$$

where $\delta>0$. In this paper we study the extremal problem

$$
\begin{align*}
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \rightarrow \max , \quad\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)} \leq & \delta, \tag{1}\\
& \left\|w_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1, j=1, \ldots, n
\end{align*}
$$

[^0]where $w(\cdot), w_{0}(\cdot)$, and $w_{j}(\cdot), j=1, \ldots, n$, are homogenous functions with some symmetry properties. Using the solution of this problem we obtain the sharp constant K for the inequality
$$
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq K\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)}^{\gamma}\left(\max _{1 \leq j \leq n}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\gamma}
$$

In particular, we find the sharp constant for the inequality

$$
\|w(\cdot) x(\cdot)\|_{L_{q}\left(\mathbb{R}_{+}^{d}\right)} \leq C\left\|w_{0}(\cdot) x(\cdot)\right\|_{L_{p}\left(\mathbb{R}_{+}^{d}\right)}^{p \alpha}\left(\max _{1 \leq j \leq d}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}\left(\mathbb{R}_{+}^{d}\right)}\right)^{r \beta}
$$

where $w(t)=\left(t_{1}^{2}+\ldots+t_{d}^{2}\right)^{\theta / 2}, w_{0}(t)=\left(t_{1}^{2}+\ldots+t_{d}^{2}\right)^{\theta_{0} / 2}, w_{j}(t)=t_{j}^{\theta_{1}}, j=1, \ldots, d$, $\theta=d(1-1 / q), \theta_{0}=d-(\lambda+d) / p, \theta_{1}=d+(\mu-d) / r$,

$$
\alpha=\frac{\mu}{p \mu+r \lambda}, \quad \beta=\frac{\lambda}{p \mu+r \lambda}, \quad \lambda, \mu>0
$$

and $(p, q, r) \in P \cup P_{1} \cup P_{2}$, where

$$
\begin{aligned}
& P=\{(p, q, r): 1 \leq q<p, r\}, \quad P_{1}=\{(p, q, r): 1 \leq q=r<p\} \\
& P_{2}=\{(p, q, r): 1 \leq q=p<r\}
\end{aligned}
$$

For $d=1, q=1$, and $(p, 1, r) \in P$ this result was proved in [4] (see also [2]).
It is appeared that the value of (1) is the error of optimal recovery of the operator $\Lambda x(\cdot)=w(\cdot) x(\cdot)$ on the class of functions $x(\cdot)$ such that $\left\|w_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1, j=1, \ldots, n$, by the information about the function $w_{0}(\cdot) x(\cdot)$ given with the error δ in L_{p}-norm. Therefore, in section 2 we begin with the setting of optimal recovery problem and then in section 3 we prove some general theorems. In section 4 we consider the case when weights are homogeneous in a cone of linear space and section 5 is devoted to the case of \mathbb{R}^{d}. In section 6 the results obtained are applied to optimal recovery and sharp inequalities of differential operators defined by Fourier transforms.

2. General setting

Let T_{0} is not empty μ-measurable subset of T. Put

$$
\begin{gathered}
\mathcal{W}=\left\{x(\cdot): x(\cdot) \in L_{p}\left(T_{0}, \mu\right),\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}<\infty, j=1, \ldots, n\right\}, \\
W=\left\{x(\cdot) \in \mathcal{W}:\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1, j=1, \ldots, n\right\},
\end{gathered}
$$

where $1 \leq p, r \leq \infty$, and $\varphi_{j}(\cdot)$ is a measurable function on T. Consider the problem of recovery of operator $\Lambda: \mathcal{W} \rightarrow L_{q}(T, \mu), 1 \leq q \leq \infty$, defined by equality $\Lambda x(\cdot)=\psi(\cdot) x(\cdot)$, where $\psi(\cdot)$ is a measurable function on T, on the class W by the information about functions $x(\cdot) \in W$ given inaccurately (we assume that $\psi(\cdot)$ and $\varphi_{j}(\cdot), j=1, \ldots, n$, such that Λ maps \mathcal{W} to $L_{q}(T, \mu)$). More precisely, we assume that for any function $x(\cdot) \in W$ we know $y(\cdot) \in L_{p}\left(T_{0}, \mu\right)$ such that $\|x(\cdot)-y(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta, \delta>0$. We want to approximate the value $\Lambda x(\cdot)$ knowing $y(\cdot)$. As recovery methods we consider all possible mappings $m: L_{p}\left(T_{0}, \mu\right) \rightarrow$ $L_{q}(T, \mu)$. The error of a method m is defined as

$$
e(p, q, r, m)=\sup _{\substack{x(\cdot) \in W,\|x(\cdot)-y(\cdot)\|_{L_{p}\left(T_{0}, \mu\right) \leq \delta} \leq \delta}}\|\Lambda x(\cdot)-m(y)(\cdot)\|_{L_{q}(T, \mu)} .
$$

The quantity

$$
\begin{equation*}
E(p, q, r)=\inf _{m: L_{p}\left(T_{0}, \mu\right) \rightarrow L_{q}(T, \mu)} e(p, q, r, m) \tag{2}
\end{equation*}
$$

is known as the optimal recovery error, and a method on which this infimum is attained is called optimal. Various settings of optimal recovery theory and examples of such problems may be found in [5], [13], [12], [6], [11].

For the lower bound of $E(p, q, r)$ we use the following result which was proved (in more or less general forms) in many papers (see, for example, [7]).

Lemma 1.

$$
\begin{equation*}
E(p, q, r) \geq \sup _{\substack{x(\cdot) \in W \\\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta}}\|\Lambda x(\cdot)\|_{L_{q}(T, \mu)} . \tag{3}
\end{equation*}
$$

3. Main Results

Set

$$
\chi_{0}(t)=\left\{\begin{array}{ll}
1, & t \in T_{0}, \\
0, & t \notin T_{0},
\end{array} \quad \sigma_{r}(t)=\sum_{j=1}^{n} \lambda_{j}\left|\varphi_{j}(t)\right|^{r}\right.
$$

Theorem 1. Let $1 \leq q<p, r, \lambda_{j} \geq 0, j=0,1, \ldots, n, \lambda_{0}+\sigma_{r}(t) \neq 0$ for almost all $t \in T_{0}$, $\sigma_{r}(t) \neq 0$ for almost all $t \in T \backslash T_{0}, \widehat{x}(t) \geq 0$ be a solution of equation

$$
\begin{equation*}
-q|\psi(t)|^{q}+p \lambda_{0} x^{p-q}(t) \chi_{0}(t)+r \sigma_{r}(t) x^{r-q}(t)=0 \tag{4}
\end{equation*}
$$

$\bar{\lambda}$ such that

$$
\begin{align*}
& \int_{T_{0}} \widehat{x}^{p}(t) d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{r} \widehat{x}^{r}(t) d \mu(t) \leq 1, j=1, \ldots, n, \tag{5}\\
& \quad \lambda_{0}\left(\int_{T_{0}} \widehat{x}^{p}(t) d \mu(t)-\delta^{p}\right)=0, \quad \lambda_{j}\left(\int_{T}\left|\varphi_{j}(t)\right|^{r} \widehat{x}^{r}(t) d \mu(t)-1\right)=0, j=1, \ldots, n .
\end{align*}
$$

Then

$$
\begin{equation*}
E(p, q, r)=\left(q^{-1} p \lambda_{0} \delta^{p}+q^{-1} r \sum_{j=1}^{n} \lambda_{j}\right)^{1 / q} \tag{6}
\end{equation*}
$$

and the method

$$
\widehat{m}(y)(t)= \begin{cases}q^{-1} p \lambda_{0} \widehat{x}^{p-q}(t)|\psi(t)|^{-q} \psi(t) y(t), & t \in T_{0}, \psi(t) \neq 0 \tag{7}\\ 0, & \text { otherwise }\end{cases}
$$

is optimal recovery method.
To prove this theorem we need some preliminary results. The first one is actually a sufficient condition in the Kuhn-Tucker theorem (the only difference is that we do not require convexity of functions).

Let $f_{j}: A \rightarrow \mathbb{R}, j=0,1, \ldots, k$, be functions defined on some set A. Consider the extremal problem

$$
\begin{equation*}
f_{0}(x) \rightarrow \max , \quad f_{j}(x) \leq 0, \quad j=1, \ldots, k, \quad x \in A \tag{8}
\end{equation*}
$$

and write down its Lagrange function

$$
\mathcal{L}(x, \lambda)=-f_{0}(x)+\sum_{j=1}^{k} \lambda_{j} f_{j}(x), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

Lemma 2. Assume that there exist $\hat{\lambda}_{j} \geq 0, j=1, \ldots, k$, and an element $\widehat{x} \in A$, admissible for problem (8), such that

$$
\begin{aligned}
& \text { (a) } \min _{x \in A} \mathcal{L}(x, \widehat{\lambda})=\mathcal{L}(\widehat{x}, \widehat{\lambda}), \quad \widehat{\lambda}=\left(\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{k}\right), \\
& \text { (b) } \widehat{\lambda}_{j} f_{j}(\widehat{x})=0, j=1, \ldots, k
\end{aligned}
$$

Then \widehat{x} is an extremal element for problem (8).
Proof. For any x admissible for problem (8) we have

$$
-f_{0}(x) \geq \mathcal{L}(x, \widehat{\lambda}) \geq \mathcal{L}(\widehat{x}, \widehat{\lambda})=-f_{0}(\widehat{x})
$$

Put

$$
F(u, v, \alpha)=-((1-\alpha) u+\alpha v)^{q}+a v^{p}+b u^{r}, \quad u, v \geq 0, \quad \alpha \in[0,1],
$$

where $a, b \geq 0$, and $1 \leq p, q, r<\infty$.
Lemma 3 ([8]). For all $a, b \geq 0, a+b>0$, and all $1 \leq q<p, r<\infty$, there exists the unique solution $\widehat{u}>0$ of the equation

$$
-q+p a u^{p-q}+r b u^{r-q}=0
$$

Moreover, for all $u, v \geq 0$ and $\alpha=q^{-1} p a \widehat{u}^{p-q}=1-q^{-1} r b \widehat{u}^{r-q}$

$$
F(\widehat{u}, \widehat{u}, \alpha) \leq F(u, v, \alpha)
$$

In particular, for all $u \geq 0$

$$
-\widehat{u}^{q}+a \widehat{u}^{p}+b \widehat{u}^{r} \leq-u^{q}+a u^{p}+b u^{r} .
$$

Proof of Theorem 1. 1. Lower estimate. The extremal problem on the right-hand side of (3) (for convenience, we raise the quantity to be maximized to the q-th power) is as follows:

$$
\begin{align*}
& \int_{T}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max , \quad \int_{T_{0}}|x(t)|^{p} d \mu(t) \leq \delta^{p} \tag{9}\\
& \int_{T}\left|\varphi_{j}(t) x(t)\right|^{r} d \mu(t) \leq 1, j=1, \ldots, n
\end{align*}
$$

If $t \in T$ such that $\psi(t)=0$, then evidently $\widehat{x}(t)=0$. If $\psi(t) \neq 0$ we obtain by Lemma 3 that that there is the unique solution $\widehat{x}(t)$ of (4). It follows by (5) that $\widehat{x}(\cdot)$ is admissible function for problem (9). Therefore, by (3) we obtain

$$
E(p, q, r) \geq\left(\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)\right)^{1 / q}
$$

From (4) we have

$$
|\psi(t)|^{q} \widehat{x}^{q}(t)=q^{-1} p \lambda_{0} \widehat{x}^{p}(t) \chi_{0}(t)+q^{-1} r \sigma_{r}(t) \widehat{x}^{r}(t) .
$$

Integrating this equality over the set T, we obtain

$$
\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)=q^{-1} p \lambda_{0} \delta^{p}+q^{-1} r \sum_{j=1}^{n} \lambda_{j} .
$$

Thus,

$$
E(p, q, r) \geq\left(q^{-1} p \lambda_{0} \delta^{p}+q^{-1} r \sum_{j=1}^{n} \lambda_{j}\right)^{1 / q}
$$

2. Upper estimate. To estimate the error of method (7) we need to find the value of the extremal problem:

$$
\begin{align*}
& \int_{T_{0}}|\psi(t) x(t)-\psi(t) \alpha(t) y(t)|^{q} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max , \tag{10}\\
& \int_{T_{0}}|x(t)-y(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{r} d \mu(t) \leq 1, j=1, \ldots, n,
\end{align*}
$$

where

$$
\alpha(t)= \begin{cases}q^{-1} p \lambda_{0} \widehat{x}^{p-q}(t)|\psi(t)|^{-q}, & t \in T_{0}, \psi(t) \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Put

$$
z(t)= \begin{cases}x(t)-y(t), & t \in T_{0} \\ 0, & t \in T \backslash T_{0}\end{cases}
$$

Then (10) may be rewritten as follows:

$$
\begin{aligned}
& \int_{T}|\psi(t)|^{q}|(1-\alpha(t)) x(t)+\alpha(t) z(t)|^{q} d \mu(t) \rightarrow \max \\
& \qquad \int_{T_{0}}|z(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{r} d \mu(t) \leq 1, j=1, \ldots, n .
\end{aligned}
$$

The value of this problem does not exceed the value of the problem

$$
\begin{align*}
& \int_{T}|\psi(t)|^{q}((1-\alpha(t)) u(t)+\alpha(t) v(t))^{q} d \mu(t) \rightarrow \max \tag{11}\\
& \qquad \int_{T_{0}} v^{p}(t) d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{r} u^{r}(t) d \mu(t) \leq 1, j=1, \ldots, n \\
& u(t) \geq 0, v(t) \geq 0 \quad \text { for almost all } t \in T
\end{align*}
$$

The Lagrange function for this problem is

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda})=\int_{T} L(t, u(t), v(t), \bar{\lambda}) d \mu(t)
$$

where

$$
L(t, u, v, \bar{\lambda})=-|\psi(t)|^{q}((1-\alpha(t)) u+\alpha(t) v)^{q}+\lambda_{0} v^{p} \chi_{0}(t)+\sigma_{r}(t) u^{r} .
$$

By Lemma 3 we have

$$
L(t, \widehat{x}(t), \widehat{x}(t), \bar{\lambda}) \leq L(t, u(t), v(t), \bar{\lambda})
$$

Thus,

$$
\mathcal{L}(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda}) \leq \mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda})
$$

It follows by Lemma 2 that functions $u(\cdot)=v(\cdot)=\widehat{x}(\cdot)$ are extremal in (11). Consequently,

$$
e(p, q, r, \widehat{m}) \leq\left(\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)\right)^{1 / q}=\left(q^{-1} p \lambda_{0} \delta^{p}+q^{-1} r \sum_{j=1}^{n} \lambda_{j}\right)^{1 / q} \leq E(p, q, r)
$$

It means that method (7) is optimal and equality (6) holds.
Denote $a_{+}=\max \{a, 0\}$.

Theorem 2. Let $1 \leq q=r<p, \lambda_{0}>0, \lambda_{j} \geq 0, j=1, \ldots, n$,

$$
\widehat{x}(t)= \begin{cases}\left(\frac{q}{p \lambda_{0}}\left(|\psi(t)|^{q}-\sigma_{q}(t)\right)_{+}\right)^{\frac{1}{p-q}}, & t \in T_{0} \tag{12}\\ 0, & t \notin T_{0}\end{cases}
$$

$\bar{\lambda}$ satisfies conditions (5), and $|\psi(t)|^{q}-\sigma_{q}(t) \leq 0$ for almost all $t \notin T_{0}$. Then

$$
\begin{equation*}
E(p, q, q)=\left(q^{-1} p \lambda_{0} \delta^{p}+\sum_{j=1}^{n} \lambda_{j}\right)^{1 / q} \tag{13}
\end{equation*}
$$

and the method

$$
\widehat{m}(y)(t)= \begin{cases}\left(1-|\psi(t)|^{-q} \sigma_{q}(t)\right)_{+} \psi(t) y(t), & t \in T_{0}, \psi(t) \neq 0 \tag{14}\\ 0, & \text { othervise }\end{cases}
$$

is optimal.
Proof. 1. Lower estimate. It follows by (5) that $\widehat{x}(\cdot)$ is admissible function for extremal problem in the right-hand side of (3). Therefore,

$$
E(p, q, q) \geq\left(\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)\right)^{1 / q}
$$

From the definition of $\widehat{x}(\cdot)$ we have

$$
|\psi(t)|^{q} \widehat{x}^{q}(t)=q^{-1} p \lambda_{0} \widehat{x}^{p}(t) \chi_{0}(t)+\sigma_{q}(t) \widehat{x}^{q}(t)
$$

Integrating this equality, we obtain

$$
\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)=q^{-1} p \lambda_{0} \delta^{p}+\sum_{j=1}^{n} \lambda_{j}
$$

Thus,

$$
E(p, q, q) \geq\left(q^{-1} p \lambda_{0} \delta^{p}+\sum_{j=1}^{n} \lambda_{j}\right)^{1 / q}
$$

2. Upper estimate. Put

$$
\alpha(t)= \begin{cases}\left(1-|\psi(t)|^{-q} \sigma_{q}(t)\right)_{+}, & t \in T_{0}, \psi(t) \neq 0 \\ 0, & \text { othervise }\end{cases}
$$

To estimate the error of method (14) we need to find the value of the extremal problem:

$$
\begin{aligned}
& \int_{T_{0}}|\psi(t)|^{q}|x(t)-\alpha(t) y(t)|^{q} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max \\
& \int_{T_{0}}|x(t)-y(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{q} d \mu(t) \leq 1, j=1, \ldots, n
\end{aligned}
$$

Putting $z(\cdot)=x(\cdot)-y(\cdot)$ this problem may be rewritten in the following form

$$
\begin{aligned}
& \int_{T_{0}}|\psi(t)|^{q}|(1-\alpha(t)) x(t)+\alpha(t) z(t)|^{q} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max , \\
& \qquad \int_{T_{0}}|z(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{q} d \mu(t) \leq 1, j=1, \ldots, n .
\end{aligned}
$$

The value of this problem evidently coincides with the value of the problem

$$
\begin{align*}
& \int_{T}|\psi(t)|^{q}((1-\alpha(t)) v(t)+\alpha(t) u(t))^{q} d \mu(t) \rightarrow \max \tag{15}\\
& \int_{T_{0}} u^{p}(t) d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{q} v^{q}(t) d \mu(t) \leq 1, j=1, \ldots, n \\
& u(t), v(t) \geq 0, \text { for almost all } t \in T
\end{align*}
$$

The Lagrange function of (15) has the form

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda})=\int_{T} L(u(t), v(t), \bar{\lambda}) d \mu(t)
$$

where

$$
L(u, v, \bar{\lambda})= \begin{cases}-|\psi(t)|^{q}((1-\alpha(t)) v+\alpha(t) u)^{q}+\lambda_{0} u^{p}+\sigma_{q}(t) v^{q}, & t \in T_{0} \\ -|\psi(t)|^{q} v^{q}+\sigma_{q}(t) v^{q}, & t \notin T_{0}\end{cases}
$$

If $\alpha(t)>0$, then

$$
\frac{\partial L}{\partial v}=q\left(v^{q-1}-((1-\alpha(t)) v+\alpha(t) u)^{q-1}\right) \sigma_{q}(t) .
$$

Therefore, for $\alpha(t)>0$ and any $u>0$, the function $L(u, v, \bar{\lambda}), v \in(0,+\infty)$, reaches a minimum at $v=u$. Set $T_{0}^{\prime}=\left\{t \in T_{0}: \alpha(t)>0\right\}$. We have

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda}) \geq \int_{T_{0}^{\prime}} L(u(\cdot), u(\cdot), \bar{\lambda}) d \mu(t)
$$

It is easily checked that for $t \in T_{0}^{\prime}$ for all $u(t) \geq 0$

$$
L(u(\cdot), u(\cdot), \bar{\lambda}) \geq L(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda}) .
$$

Consequently,

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda}) \geq \int_{T_{0}^{\prime}} L(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda}) d \mu(t)=\mathcal{L}(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda})
$$

Taking into account (5) we obtain by Lemma 2 that $u(\cdot)=v(\cdot)=\widehat{x}(\cdot)$ are extremal functions in (15). Thus,

$$
e^{q}(p, q, q, \widehat{m})=\int_{T}|\psi(t) \widehat{x}(t)|^{q} d \mu(t)=q^{-1} p \lambda_{0} \delta^{p}+\sum_{j=1}^{n} \lambda_{j} \leq E^{q}(p, q, q)
$$

It means that the method \widehat{m} is optimal and the optimal recovery error is as stated.
Theorem 3. Let $1 \leq q=p<r, \lambda_{0}>0, \lambda_{j} \geq 0, j=1, \ldots, n, \sigma_{r}(t) \neq 0$ for almost all $t \in T$,

$$
\widehat{x}(t)= \begin{cases}\left(p r^{-1} \sigma_{r}^{-1}(t)\left(|\psi(t)|^{p}-\lambda_{0}\right)_{+}\right)^{\frac{1}{r-p}}, & t \in T_{0}, \tag{16}\\ \left(p r^{-1} \sigma_{r}^{-1}(t)|\psi(t)|^{p}\right)^{\frac{1}{r-p}}, & t \in T \backslash T_{0},\end{cases}
$$

and $\bar{\lambda}$ satisfies conditions (5). Then

$$
\begin{equation*}
E(p, p, r)=\left(\lambda_{0} \delta^{p}+\frac{r}{p} \sum_{j=1}^{n} \lambda_{j}\right)^{1 / p}, \tag{17}
\end{equation*}
$$

and the method

$$
\widehat{m}(y)(t)= \begin{cases}\alpha(t) \psi(t) y(t), & t \in T_{0} \tag{18}\\ 0, & t \in T \backslash T_{0}\end{cases}
$$

where

$$
\alpha(t)= \begin{cases}\min \left\{1, \lambda_{0}|\psi(t)|^{-p}\right\}, & t \in T_{0}, \psi(t) \neq 0 \\ 0, & \text { othervise }\end{cases}
$$

is optimal.
Proof. 1. Lower estimate. By the definition of $\widehat{x}(\cdot)$ we have

$$
|\psi(t)|^{p} \widehat{x}^{p}(t)=\lambda_{0} \widehat{x}^{p}(t) \chi_{0}(t)+\frac{r}{p} \sigma_{r}(t) \widehat{x}^{r}(t)
$$

Using the similar arguments as in the proof of Theorem 1 we obtain

$$
E(p, p, r) \geq\left(\int_{T}|\psi(t)|^{p} \widehat{x}^{p}(t) d \mu(t)\right)^{1 / p}=\left(\lambda_{0} \delta^{p}+\frac{r}{p} \sum_{j=1}^{n} \lambda_{j}\right)^{1 / p}
$$

2. Upper estimate. To estimate the error of method (18) we need to find the value of the following extremal problem:

$$
\begin{aligned}
& \int_{T_{0}}|\psi(t)|^{p}|x(t)-\alpha(t) y(t)|^{p} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{p} d \mu(t) \rightarrow \max \\
& \int_{T_{0}}|x(t)-y(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{r} d \mu(t) \leq 1, j=1, \ldots, n
\end{aligned}
$$

Putting $z(\cdot)=x(\cdot)-y(\cdot)$ this problem may be rewritten in the form

$$
\begin{aligned}
& \int_{T_{0}}|\psi(t)|^{p}|(1-\alpha(t)) x(t)+\alpha(t) z(t)|^{p} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{p} d \mu(t) \rightarrow \max \\
& \qquad \int_{T_{0}}|z(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t) x(t)\right|^{r} d \mu(t) \leq 1, j=1, \ldots, n
\end{aligned}
$$

The value of this problem evidently coincides with the value of the problem

$$
\begin{align*}
& \int_{T}|\psi(t)|^{p}((1-\alpha(t)) v(t)+\alpha(t) u(t))^{p} d \mu(t) \rightarrow \max \tag{19}\\
& \qquad \begin{aligned}
& \\
& \qquad \int_{T_{0}} u^{p}(t) d \mu(t) \leq \delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{r} v^{r}(t) d \mu(t) \leq 1, j=1, \ldots, n \\
& u(t), v(t) \geq 0, \text { for almost all } t \in T
\end{aligned}
\end{align*}
$$

The Lagrange function of (19) has the form

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda})=\int_{T} L(u(t), v(t), \bar{\lambda}) d \mu(t)
$$

where

$$
L(u, v, \bar{\lambda})= \begin{cases}-|\psi(t)|^{p}((1-\alpha(t)) v+\alpha(t) u)^{p}+\lambda_{0} u^{p}+\sigma_{r}(t) v^{r}, & t \in T_{0} \\ -|\psi(t)|^{p} v^{p}+\sigma_{r}(t) v^{r}, & t \in T \backslash T_{0}\end{cases}
$$

For $t \in T_{0}$ and $|\psi(t)|^{p}>\lambda_{0}$ we have

$$
\frac{\partial L}{\partial u}=p \lambda_{0}\left(u^{p-1}-((1-\alpha(t)) v+\alpha(t) u)^{p-1}\right)
$$

Consequently, in this case for any $v>0$ the function $L(u, v, \bar{\lambda}), v \in(0,+\infty)$, reaches a minimum at $v=u$. If $t \in T_{0}, 0<|\psi(t)|^{p} \leq \lambda_{0}$, then $\alpha(t)=1$ and $L(u, v, \bar{\lambda}) \geq 0$. If $t \in T_{0}$ and $\psi(t)=0$, then again $L(u, v, \bar{\lambda}) \geq 0$. Set $T_{1}=\left\{t \in T_{0}:|\psi(t)|^{p}>\lambda_{0}\right\}$. Then for all $u(t), v(t) \geq 0$ we have

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda}) \geq \int_{T_{1}} L(v(\cdot), v(\cdot), \bar{\lambda}) d \mu(t)+\int_{T \backslash T_{0}} L(v(\cdot), v(\cdot), \bar{\lambda}) d \mu(t)
$$

It is easy to check that for all $v(t) \geq 0$

$$
L(v(\cdot), v(\cdot), \bar{\lambda}) \geq L(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda})
$$

Therefore,

$$
\mathcal{L}(u(\cdot), v(\cdot), \bar{\lambda}) \geq \int_{T_{1} \cup\left(T \backslash T_{0}\right)} L(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda}) d \mu(t)=\mathcal{L}(\widehat{x}(\cdot), \widehat{x}(\cdot), \bar{\lambda}) .
$$

Taking into account (5) we obtain by Lemma 2 that $u(\cdot)=v(\cdot)=\widehat{x}(\cdot)$ are extremal functions in (19). Consequently,

$$
e^{p}(p, p, r, \widehat{m})=\int_{T}|\psi(t) \widehat{x}(t)|^{q} d \mu(t)=\lambda_{0} \delta^{p}+\frac{r}{p} \sum_{j=1}^{n} \lambda_{j} \leq E^{p}(p, p, r)
$$

It means that the method \widehat{m} is optimal and the optimal recovery error is as stated.
Note that if conditions of Theorems 1, 2, and 3 are fulfilled, then we have

$$
\begin{equation*}
E(p, q, r)=\sup _{\substack{\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta \\\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu) \leq 1, j=1, \ldots, n}}}\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \tag{20}
\end{equation*}
$$

4. The case of homogenous weight functions

Let T be a cone in a linear space, $T_{0}=T, \mu(\cdot)$ be a homogenous measure of degree d, $|\psi(\cdot)|$ be homogenous function of degree $\eta,\left|\varphi_{j}(\cdot)\right|, j=1, \ldots, n$, be homogenous functions of degrees $\nu, \psi(t) \neq 0$ and $\sum_{j=1}^{n}\left|\varphi_{j}(t)\right| \neq 0$ for almost all $t \in T$. Let assume, again, that $1 \leq p<q, r<\infty$. For $k \in[0,1)$ the function $k^{\frac{1}{p-q}}(1-k)^{-\frac{1}{r-q}}$ increases monotonically from 0 to $+\infty$. Consequently, there exists $k(\cdot)$ such that for almost all $t \in T$

$$
\begin{equation*}
\frac{k^{\frac{1}{p-q}}(t)}{(1-k(t))^{\frac{1}{r-q}}}=s_{r}^{-\frac{1}{r-q}}(t)|\psi(t)|^{\frac{q(p-r)}{(p-q)(r-q)}}, \quad s_{r}(t)=\sum_{j=1}^{n}\left|\varphi_{j}(t)\right|^{r} . \tag{21}
\end{equation*}
$$

Set

$$
k(t)=\left\{\begin{array}{cl}
\left(1-|\psi(t)|^{-q} s_{q}(t)\right)_{+}, & (p, q, r) \in P_{1} \\
\min \left\{1,|\psi(t)|^{-p}\right\} . & (p, q, r) \in P_{2}
\end{array}\right.
$$

Theorem 4. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}$ and $\nu+d(1 / r-1 / p) \neq 0$. Assume that for $(p, q, r) \in P \cup P_{1}$

$$
\begin{aligned}
I_{1} & =\int_{T}|\psi(t)|^{\frac{q p}{p-q}} k^{\frac{p}{p-q}}(t) d \mu(t)<\infty, \\
I_{j+1} & =\int_{T}|\psi(t)|^{\frac{q r}{p-q}}\left|\varphi_{j}(t)\right|^{r} k^{\frac{r}{p-q}}(z) d \mu(t)<\infty, j=1, \ldots, n,
\end{aligned}
$$

and for $(p, q, r) \in P_{2}$

$$
\begin{aligned}
I_{1} & =\int_{T}\left(s_{r}^{-1}(t)\left(|\psi(t)|^{p}-1\right)_{+}\right)^{\frac{p}{r-p}} d \mu(t)<\infty \\
I_{j+1} & =\int_{T}\left|\varphi_{j}(t)\right|^{r}\left(s_{r}^{-1}(t)\left(|\psi(t)|^{p}-1\right)_{+}\right)^{\frac{r}{r-p}} d \mu(t)<\infty, j=1, \ldots, n
\end{aligned}
$$

Moreover, assume that $I_{2}=\ldots=I_{n+1}$. Then

$$
\begin{equation*}
E(p, q, r)=\delta^{\gamma} I_{1}^{-\gamma / p} I_{2}^{-(1-\gamma) / r}\left(I_{1}+n I_{2}\right)^{1 / q} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{\nu-\eta-d(1 / q-1 / r)}{\nu+d(1 / r-1 / p)} \tag{23}
\end{equation*}
$$

The method

$$
\widehat{m}(y)(t)=k(\xi t) \psi(t) y(t)
$$

where

$$
\begin{equation*}
\xi=\left(\delta I_{1}^{-1 / p} I_{2}^{1 / r}\right)^{\frac{1}{\nu+d(1 / r-1 / p)}} \tag{24}
\end{equation*}
$$

is optimal.
Proof. 1. Let $(p, q, r) \in P$. Put

$$
\widehat{x}(t)=\left(\frac{q|\psi(t)|^{q}}{p \lambda_{0}}\right)^{\frac{1}{p-q}} k^{\frac{1}{p-q}}(\xi t)
$$

where λ_{0} will be specified later. We have

$$
\begin{equation*}
p \lambda_{0} \widehat{x}^{p-q}(t)=q|\psi(t)|^{q} k(\xi t) \tag{25}
\end{equation*}
$$

and

$$
r c_{r}(t) \widehat{x}^{r-q}(t)=r c_{r}(t)\left(\frac{q|\psi(t)|^{q}}{p \lambda_{0}}\right)^{\frac{r-q}{p-q}} k^{\frac{r-q}{p-q}}(\xi t)
$$

Since $|\psi(\cdot)|$ and $\left|\varphi_{j}(\cdot)\right|, j=1, \ldots, n$, are homogenous it follows by (21) that

$$
k^{\frac{r-q}{p-q}}(\xi t)=\frac{|\psi(\xi t)|^{\frac{q(p-r)}{p-q}}}{c_{r}(\xi t)}(1-k(\xi t))=\xi^{\frac{q(p-r)}{p-q}-\nu r} \frac{|\psi(t)|^{\frac{q(p-r)}{p-q}}}{c_{r}(t)}(1-k(\xi t)) .
$$

Thus,

$$
r c_{r}(t) \widehat{x}^{r-q}(t)=r\left(\frac{q}{p \lambda_{0}}\right)^{\frac{r-q}{p-q}} \xi^{\eta \frac{q(p-r)}{p-q}-\nu r}|\psi(t)|^{q}(1-k(\xi t))
$$

Put

$$
\begin{equation*}
\lambda=\frac{q}{r}\left(\frac{q}{p \lambda_{0}}\right)^{-\frac{r-q}{p-q}} \xi^{-\eta \frac{q(p-r)}{p-q}+\nu r} . \tag{26}
\end{equation*}
$$

Then

$$
\begin{equation*}
r \lambda c_{r}(t) \widehat{x}^{r-q}(t)=q|\psi(t)|^{q}(1-k(\xi t)) \tag{27}
\end{equation*}
$$

Taking the sum of (25) and (27), we obtain

$$
p \lambda_{0} \widehat{x}^{p-q}(t)+r \lambda c_{r}(t) \widehat{x}^{r-q}(t)=q|\psi(t)|^{q} .
$$

It means that $\widehat{x}(\cdot)$ satisfies (4) for $\lambda_{1}=\ldots=\lambda_{n}=\lambda$.

Now we show that for

$$
\begin{equation*}
\lambda_{0}=\frac{q}{p} I_{1}^{\frac{p-q}{p}} \xi^{-\eta q-d \frac{p-q}{p}} \delta^{q-p} \tag{28}
\end{equation*}
$$

the equalities

$$
\int_{T} \widehat{x}^{p}(t) d \mu(t)=\delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{r} \widehat{x}^{r}(t) d \mu(t)=1, j=1, \ldots, n
$$

hold. In view of the definition of $\widehat{x}(\cdot)$ we need to check that

$$
\begin{gathered}
\int_{T}\left(\frac{q|\psi(t)|^{q}}{p \lambda_{0}}\right)^{\frac{p}{p-q}} k^{\frac{p}{p-q}}(\xi t) d \mu(t)=\delta^{p}, \\
\int_{T}\left|\varphi_{j}(t)\right|^{r}\left(\frac{q|\psi(t)|^{q}}{p \lambda_{0}}\right)^{\frac{r}{p-q}} k^{\frac{r}{p-q}}(\xi t) d \mu(t)=1, j=1, \ldots, n .
\end{gathered}
$$

Changing $z=\xi t$ and taking into account that functions $|\psi(\cdot)|,\left|\varphi_{j}(\cdot)\right|, j=1, \ldots, n$, with the measure $\mu(\cdot)$ are homogenous, we obtain

$$
\left(\frac{q}{p \lambda_{0}}\right)^{\frac{p}{p-q}} I_{1}=\delta^{p} \xi^{\frac{\eta q p}{p-q}+d}, \quad\left(\frac{q}{p \lambda_{0}}\right)^{\frac{r}{p-q}} I_{j+1}=\xi^{\frac{\eta q r}{p-q}+\nu r+d}, j=1, \ldots, n .
$$

The validity of these equalities immediately follows from the definitions of λ_{0} and ξ.
It follows by Theorem 1, (28), (26), and (24) that

$$
\begin{aligned}
E^{q}(p, q, r)=\frac{p \lambda_{0} \delta^{p}+n r \lambda}{q} & =I_{1}^{\frac{p-q}{p}} \xi^{-\eta q-d \frac{p-q}{p}} \delta^{q} \\
& +n\left(\frac{p \lambda_{1}}{q}\right)^{\frac{r-q}{p-q}} \xi^{\nu r-\eta \frac{q(p-r)}{p-q}}=\delta^{q \gamma} I_{1}^{-q \gamma / p} I_{2}^{-q(1-\gamma) / r}\left(I_{1}+n I_{2}\right)
\end{aligned}
$$

Moreover, the same theorem states that the method

$$
\widehat{m}(y)(t)=q^{-1} p \lambda_{0} \widehat{x}^{p-q}(t)|\psi(t)|^{-q} \psi(t) y(t)=k(\xi t) \psi(t) y(t)
$$

is optimal.
2. Let $(p, q, r) \in P_{1}$. We use Theorem 2. Consider the function $\widehat{x}(\cdot)$ defined by (12) with $\lambda_{1}=\ldots=\lambda_{n}=\lambda$. Let us find λ_{0} and λ from the conditions

$$
\int_{T} \widehat{x}^{p}(t) d \mu(t)=\delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{q} \widehat{x}^{q}(t) d \mu(t)=1, j=1, \ldots, n
$$

Then we obtain

$$
\begin{gathered}
\left(\frac{q}{p \lambda_{0}}\right)^{\frac{p}{p-q}} \int_{T}\left(|\psi(t)|^{q}-\lambda s_{q}(t)\right)_{+}^{\frac{p}{p-q}} d \mu(t)=\delta^{p} \\
\left(\frac{q}{p \lambda_{0}}\right)^{\frac{q}{p-q}} \int_{T}\left|\varphi_{j}(t)\right|^{q}\left(|\psi(t)|^{q}-\lambda s_{q}(t)\right)_{+}^{\frac{q}{p-q}} d \mu(t)=1, j=1, \ldots, n
\end{gathered}
$$

Put $\lambda=a^{(\eta-\nu) q}, a>0$. Changing $t=a z$, we obtain

$$
\left(\frac{q}{p \lambda_{0}}\right)^{\frac{p}{p-q}} a^{d+\frac{p q \eta}{p-q}} I_{1}=\delta^{p}, \quad\left(\frac{q}{p \lambda_{0}}\right)^{\frac{q}{p-q}} a^{d+q \nu+\frac{q^{2} \eta}{p-q}} I_{j+1}=1, j=1, \ldots, n
$$

It is easy to check that these equalities are fulfilled for

$$
a=\left(I_{1}^{1 / p} I_{2}^{-1 / q} \delta^{-1}\right)^{\frac{1}{\nu+d(1 / q-1 / p)}}, \quad \lambda_{0}=\frac{q}{p} I_{1} I_{2}^{-1} \delta^{-p}\left(I_{1}^{-q / p} I_{2} \delta^{q}\right)^{\frac{\eta-\nu}{\nu+d(1 / q-1 / p)}} .
$$

Substituting these values in (13) and (14) we obtain the statement of the theorem in the case under consideration.
3. Let $(p, q, r) \in P_{2}$. Here we use Theorem 3. Put $\lambda_{1}=\ldots=\lambda_{n}=\lambda$ in the definition of $\widehat{x}(\cdot)$ (see (16)). We find λ_{0} and λ from the conditions

$$
\int_{T} \widehat{x}^{p}(t) d \mu(t)=\delta^{p}, \quad \int_{T}\left|\varphi_{j}(t)\right|^{r} \widehat{x}^{r}(t) d \mu(t)=1, j=1, \ldots, n
$$

We have

$$
\begin{gathered}
\left(\frac{p}{r \lambda}\right)^{\frac{p}{r-p}} \int_{T}\left(s_{r}^{-1}(t)\left(|\psi(t)|^{p}-\lambda_{0}\right)_{+}\right)^{\frac{p}{r-p}} d \mu(t)=\delta^{p} \\
\left(\frac{p}{r \lambda}\right)^{\frac{r}{r-p}} \int_{T}\left|\varphi_{j}(t)\right|^{r}\left(s_{r}^{-1}(t)\left(|\psi(t)|^{p}-\lambda_{0}\right)_{+}\right)^{\frac{r}{r-p}} d \mu(t)=1, j=1, \ldots, n
\end{gathered}
$$

Put $\lambda_{0}=a^{\eta p}, a>0$. Changing $t=a z$, we obtain

$$
\begin{gathered}
\left(\frac{p}{r \lambda}\right)^{\frac{p}{r-p}} a^{d+\frac{p^{2} \eta}{r-p}-\frac{p r \nu}{r-p}} I_{1}=\delta^{p} \\
\left(\frac{p}{r \lambda}\right)^{\frac{r}{r-p}} a^{d+r \nu+\frac{p r \eta}{r-p}-\frac{r^{2} \nu}{r-p}} I_{j+1}=1, j=1, \ldots, n
\end{gathered}
$$

These equalities are valid for

$$
\begin{aligned}
& a=\left(I_{1}^{1 / p} I_{2}^{-1 / r} \delta^{-1}\right)^{\frac{1}{\nu+d(1 / r-1 / p)}}, \\
& \lambda=\frac{p}{r} I_{1}^{r / p-1} \delta^{p-r}\left(I_{1}^{r / p} I_{2}^{-1} \delta^{-r}\right)^{\frac{p \eta / r-\nu-d(1 / r-1 / p)}{\nu+d(1 / r-1 / p)}} .
\end{aligned}
$$

It remains to substitute these values into (17) and (18).
Corollary 1. Assume that conditions of Theorem 4 hold. Then for all $x(\cdot) \neq 0$ such that $x(\cdot) \in L_{p}(T, \mu)$ and $\varphi_{j}(\cdot) x(\cdot) \in L_{r}(T, \mu), j=1, \ldots, n$, the sharp inequality

$$
\begin{equation*}
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq C\|x(\cdot)\|_{L_{p}(T, \mu)}^{\gamma}\left(\max _{1 \leq j \leq n}\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\gamma} \tag{29}
\end{equation*}
$$

holds, where

$$
C=I_{1}^{-\gamma / p} I_{2}^{-(1-\gamma) / r}\left(I_{1}+n I_{2}\right)^{1 / q}
$$

Proof. Let $x(\cdot) \in L_{p}(T, \mu),\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}<\infty, j=1, \ldots, n$ and $x(\cdot) \neq 0$. Put

$$
A=\max _{1 \leq j \leq n}\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}
$$

Consider $\widehat{x}(\cdot)=x(\cdot) / A$. Put $\delta=\|\widehat{x}(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)}$. Then $\left\|\varphi_{j}(\cdot) \widehat{x}(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1, j=1, \ldots, n$. In view of (20) and Theorem 4 we have

$$
\|\psi(\cdot) \widehat{x}(\cdot)\|_{L_{q}(T, \mu)} \leq C\|\widehat{x}(\cdot)\|_{L_{p}(T, \mu)}^{\gamma}
$$

This implies (29).
If there exists a $\widetilde{C}<C$ for which (29) holds, then

$$
E(p, q, r)=\sup _{\substack{\|x(\cdot)\|_{L_{p}(T, \mu)} \leq \delta \\\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)} \leq 1, j=1, \ldots, n}}\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C} \delta^{\gamma}<C \delta^{\gamma}
$$

This contradicts with (22).

Let $|w(\cdot)|,\left|w_{0}(\cdot)\right|$ be homogenous functions of degrees θ, θ_{0}, respectively and $\left|w_{j}(\cdot)\right|$, $j=1, \ldots, n$, be homogenous functions of degree θ_{1}. We assume that $w(t), w_{0}(t) \neq 0$ and $\sum_{j=1}^{n}\left|w_{j}(t)\right| \neq 0$ for almost all $t \in T$.

For $(p, q, r) \in P$ we define $\widetilde{k}(\cdot)$ by the equality

$$
\frac{\widetilde{k}^{\frac{1}{p-q}}(t)}{(1-\widetilde{k}(t))^{\frac{1}{r-q}}}=\left|\frac{w_{0}(t)}{w(t)}\right|^{\frac{p}{p-q}}\left(\sum_{j=1}^{n}\left|\frac{w_{j}(t)}{w(t)}\right|^{r}\right)^{-\frac{1}{r-q}} .
$$

For $(p, q, r) \in P_{1}$ set

$$
\widetilde{k}(t)=\left(1-|w(t)|^{-q} \sum_{j=1}^{n}\left|w_{j}(t)\right|^{q}\right)_{+}
$$

Put

$$
\begin{equation*}
\widetilde{\theta}=\theta+d / q, \quad \widetilde{\theta}_{0}=\theta_{0}+d / p, \quad \widetilde{\theta}_{1}=\theta_{1}+d / r, \quad \widetilde{\gamma}=\frac{\widetilde{\theta}_{1}-\widetilde{\theta}}{\widetilde{\theta}_{1}-\widetilde{\theta}_{0}} \tag{30}
\end{equation*}
$$

Corollary 2. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}$ and $\widetilde{\theta}_{0} \neq \tilde{\theta}_{1}$. Assume that for $(p, q, r) \in P \cup P_{1}$

$$
\begin{aligned}
\widetilde{I}_{1} & =\int_{T}\left|\frac{w(t)}{w_{0}(t)}\right|^{\frac{q p}{p-q}} \widetilde{k}^{\frac{p}{p-q}}(t) d \mu(t)<\infty, \\
\widetilde{I}_{j+1} & =\int_{T} \frac{|w(t)|^{\frac{q r}{p-q}}}{\left|w_{0}(t)\right|^{\frac{p r}{p-q}}}\left|w_{j}(t)\right|^{r} \widetilde{k}^{\frac{r}{p-q}}(t) d \mu(t)<\infty, j=1, \ldots, n,
\end{aligned}
$$

and for $(p, q, r) \in P_{2}$

$$
\begin{aligned}
\widetilde{I}_{1} & =\int_{T}\left|w_{0}(t)\right|^{p}\left(\frac{\left(|w(t)|^{p}-\left|w_{0}(t)\right|^{p}\right)_{+}}{\sum_{k=1}^{n}\left|w_{k}(t)\right|^{r}}\right)^{\frac{p}{r-p}} d \mu(t)<\infty \\
\widetilde{I}_{j+1} & =\int_{T}\left|w_{j}(t)\right|^{r}\left(\frac{\left(|w(t)|^{p}-\left|w_{0}(t)\right|^{p}\right)_{+}}{\sum_{k=1}^{n}\left|w_{k}(t)\right|^{r}}\right)^{\frac{r}{r-p}} d \mu(t)<\infty, j=1, \ldots, n
\end{aligned}
$$

Moreover, assume that $\widetilde{I}_{2}=\ldots=\widetilde{I}_{n+1}$. Then for all $x(\cdot) \neq 0$ such that $w_{0}(\cdot) x(\cdot) \in L_{p}(T, \mu)$ and $w_{j}(\cdot) x(\cdot) \in L_{r}(T, \mu), j=1, \ldots, n$, the sharp inequality

$$
\begin{equation*}
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C}\left\|w_{0}(\cdot) x(\cdot)\right\|_{L_{p}(T, \mu)}^{\tilde{\tilde{}}}\left(\max _{1 \leq j \leq n}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\widetilde{\gamma}} \tag{31}
\end{equation*}
$$

holds, where

$$
\widetilde{C}=\widetilde{I}_{1}^{-\widetilde{\gamma} / p} \widetilde{I}_{2}^{-(1-\widetilde{\gamma}) / r}\left(\widetilde{I}_{1}+n \widetilde{I}_{2}\right)^{1 / q}
$$

Proof. Set

$$
\psi(t)=\frac{w(t)}{w_{0}(t)}, \quad \varphi_{j}(t)=\frac{w_{j}(t)}{w_{0}(t)}, j=1, \ldots, n
$$

Then $|\psi(\cdot)|$ is a homogenous function of degree $\eta=\theta-\theta_{0}$ and $\left|\varphi_{j}(\cdot)\right|, j=1, \ldots, n$, are homogenous functions of degrees $\nu=\theta_{1}-\theta_{0}$. The quantity γ which was defined by (23) has the following form:

$$
\widetilde{\gamma}=\frac{\widetilde{\theta}_{1}-\tilde{\theta}}{\widetilde{\theta}_{1}-\widetilde{\theta}_{0}}
$$

It follows by Corollary 1 that for all $y(\cdot) \neq 0$ such that $y(\cdot) \in L_{p}(T, \mu)$ and $\varphi_{j}(\cdot) y(\cdot) \in$ $L_{r}(T, \mu), j=1, \ldots, n$, the sharp inequality

$$
\|\psi(\cdot) y(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C}\|y(\cdot)\|_{L_{p}(T, \mu)}^{\widetilde{\gamma}}\left(\max _{1 \leq j \leq n}\left\|\varphi_{j}(\cdot) y(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\tilde{\gamma}}
$$

holds. Substituting $y(\cdot)=w_{0}(\cdot) x(\cdot)$, we obtain (31).

5. Homogenous weights in \mathbb{R}^{d}

Let T be a cone in $\mathbb{R}^{d}, d \mu(t)=d t,|\psi(\cdot)|$ be homogenous function of degree $\eta,\left|\varphi_{j}(\cdot)\right|$, $j=1, \ldots, n$, be homogenous functions of degrees $\nu, \psi(t) \neq 0$ and $\sum_{j=1}^{n}\left|\varphi_{j}(t)\right| \neq 0$ for almost all $t \in T$. Consider the polar transformation

$$
\begin{aligned}
& t_{1}=\rho \cos \omega_{1} \\
& t_{2}=\rho \sin \omega_{1} \cos \omega_{2} \\
& \ldots \\
& t_{d-1}=\rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \cos \omega_{d-1}, \\
& t_{d}=\rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1} .
\end{aligned}
$$

Set $\omega=\left(\omega_{1}, \ldots, \omega_{d-1}\right)$. For any function $f(\cdot)$ we put

$$
\begin{equation*}
\widetilde{f}(\omega)=\left|f\left(\cos \omega_{1}, \ldots, \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right)\right| \tag{32}
\end{equation*}
$$

Note that if $|f(\cdot)|$ is a homogenous function of degree κ, then $f(\omega)=\rho^{-\kappa}|f(t)|$. Denote by Ω the range of ω. Since T is a cone, Ω does not depend on ρ. Put

$$
J(\omega)=\sin ^{d-2} \omega_{1} \sin ^{d-3} \omega_{2} \ldots \sin \omega_{d-2}
$$

Assume that $\gamma \in(0,1)$, where γ is defined by (23). Put

$$
\begin{equation*}
\frac{1}{q^{*}}=\frac{1}{q}-\frac{\gamma}{p}-\frac{1-\gamma}{r} \tag{33}
\end{equation*}
$$

It is easy to verify that $q^{*}>q \geq 1$. Moreover,

$$
q^{*}=\frac{p q r(\nu+d(1 / r-1 / p))}{\nu r(p-q)-\eta q(p-r)}
$$

Theorem 5. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}$ and $\gamma \in(0,1)$. Assume that

$$
I=\int_{\Omega} \frac{\widetilde{\psi}^{q^{*}}(\omega)}{\widetilde{s}_{r}^{q^{*}(1-\gamma) / r}(\omega)} J(\omega) d \omega<\infty
$$

and $I_{1}^{\prime}=\ldots=I_{n}^{\prime}$, where

$$
I_{j}^{\prime}=\int_{\Omega} \frac{\widetilde{\psi}^{q^{*}}(\omega) \widetilde{\varphi}_{j}^{r}(\omega)}{\widetilde{s}_{r}^{q^{*}(1-\gamma) / r+1}(\omega)} J(\omega) d \omega, j=1, \ldots, n .
$$

Then

$$
\begin{equation*}
E(p, q, r)=K \delta^{\gamma} \tag{34}
\end{equation*}
$$

where

$$
K=\gamma^{-\frac{\gamma}{p}}\left(\frac{1-\gamma}{n}\right)^{-\frac{1-\gamma}{r}}\left(\frac{B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r\right) I}{|\nu+d(1 / r-1 / p)|(\gamma r+(1-\gamma) p)}\right)^{1 / q^{*}}
$$

where $B(\cdot, \cdot)$ is the Eiler beta-function. Moreover, the method

$$
\widehat{m}(y)(t)=\kappa\left(\widehat{\xi}^{\frac{1}{\nu+d(1 / r-1 / p)}} t\right) \psi(t) y(t)
$$

where

$$
\widehat{\xi}=\delta \gamma^{-1 / p}\left(\frac{1-\gamma}{n}\right)^{1 / r}\left(\frac{B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r\right) I}{|\nu+d(1 / r-1 / p)|(\gamma r+(1-\gamma) p)}\right)^{1 / r-1 / p}
$$

is optimal recovery method.
Proof. First of all, we note that $I_{1}^{\prime}+\ldots+I_{n}^{\prime}=I$. Consequently, $I_{j}^{\prime}=I / n, j=1, \ldots, n$. We will apply Theorem 4.

1. Let $(p, q, r) \in P$. Passing to the polar transformation we obtain

$$
\frac{k^{\frac{1}{p-q}}(\rho, \omega)}{(1-k(\rho, \omega))^{\frac{1}{r-q}}}=\rho^{\frac{\eta q(p-r)-\nu r(p-q)}{(p-q)(r-q)}} \frac{\widetilde{\psi}^{\frac{q(p-r)}{(p-q)(r-q)}}(\omega)}{\widetilde{s}_{r}^{\frac{1}{r-q}}(\omega)} .
$$

Using the same scheme of calculation of I_{1} as it was given in [8, Theorem 3], we obtain

$$
I_{1}=\frac{\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I
$$

where

$$
\widehat{p}=q^{*} \frac{\gamma}{p}, \quad \widehat{q}=q^{*} \frac{1-\gamma}{r} .
$$

In a similar way we calculate

$$
I_{j+1}=\frac{1-\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I_{j}^{\prime}, j=1, \ldots, n
$$

Thus,

$$
I_{2}=\frac{1-\gamma}{n p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I
$$

It remains to substitute these values into (22) and (24).
2. Let $(p, q, r) \in P_{1}$. Now we use the scheme of calculation of I_{1} which was given in [10, Theorem 3]. We obtain

$$
\begin{aligned}
I_{1}=\frac{I}{|\nu-\eta| q} B\left(q^{*} \gamma / p+\right. & \left.2, q^{*}(1-\gamma) / q\right) \\
& =\frac{I}{|\nu-\eta| q} \frac{q^{*} \gamma / p+1}{q^{*} \gamma / p+1+q^{*}(1-\gamma) / q} B\left(q^{*} \gamma / p+1, q^{*}(1-\gamma) / q\right)
\end{aligned}
$$

Since $r=q$ we have

$$
\frac{1}{q^{*}}=\gamma\left(\frac{1}{q}-\frac{1}{p}\right), \quad \gamma=\frac{\nu-\eta}{\nu+d(1 / q-1 / p)}
$$

Therefore, $q^{*} \gamma / p+1=q^{*} \gamma / q$. Hence

$$
\begin{aligned}
& I_{1}=\frac{I \gamma}{|\nu-\eta| q} B\left(q^{*} \gamma / p+1, q^{*}(1-\gamma) / q\right) \\
&=\frac{I \gamma}{|\nu-\eta| q} \frac{q^{*} \gamma / p}{q^{*} \gamma / p+q^{*}(1-\gamma) / q} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / q\right) \\
&=\frac{\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I .
\end{aligned}
$$

By the similar way we get

$$
\begin{aligned}
& I_{j+1}=\frac{I_{j}^{\prime}}{|\nu-\eta| q} B\left(q^{*} \gamma / p+1, q^{*}(1-\gamma) / q+1\right) \\
&=\frac{I_{j}^{\prime}}{|\nu-\eta| q} \frac{q^{*} \gamma / p}{q^{*} \gamma / p+q^{*}(1-\gamma) / q+1} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / q+1\right) \\
&=\frac{I_{j}^{\prime} \gamma}{|\nu-\eta| p} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / q+1\right)=\frac{I_{j}^{\prime} \gamma}{|\nu-\eta| p} \frac{q^{*}(1-\gamma) / q}{q^{*} \gamma / p+q^{*}(1-\gamma) / q} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / q\right) \\
&=\frac{1-\gamma}{n p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I
\end{aligned}
$$

Thus, we obtain the same formulas for I_{1} and I_{2} as in the first case.
3. Let $(p, q, r) \in P_{2}$. Here we use the scheme of calculation of J_{1} and J_{2} which was given in [10, Theorem 3]. We obtain

$$
\begin{aligned}
I_{1} & =\frac{I}{|\eta| p} B\left(q^{*} \gamma / p+1, q^{*}(1-\gamma) / r+1\right), \\
I_{j+1} & =\frac{I_{j}^{\prime}}{|\eta| p} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r+2\right), j=1, \ldots, n
\end{aligned}
$$

Since $q=p$ we have

$$
\frac{1}{q^{*}}=(1-\gamma)\left(\frac{1}{p}-\frac{1}{r}\right), \quad 1-\gamma=\frac{\eta}{\nu+d(1 / r-1 / p)}
$$

Therefore, $q^{*}(1-\gamma) / r+1=q^{*}(1-\gamma) / p$. Hence

$$
\begin{aligned}
I_{1}= & \frac{I}{|\eta| p} \frac{q^{*} \gamma / p}{q^{*} \gamma / p+q^{*}(1-\gamma) / r+1} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r+1\right) \\
=\frac{I \gamma}{|\eta| p} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r+1\right)= & \frac{I \gamma}{|\eta| p} \frac{q^{*}(1-\gamma) / r}{q^{*} \gamma / p+q^{*}(1-\gamma) / r} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r\right) \\
& =\frac{\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I .
\end{aligned}
$$

For $I_{j+1}, j=1, \ldots, n$, we have

$$
\begin{aligned}
& I_{j+1}=\frac{I_{j}^{\prime}}{|\eta| p} \frac{q^{*}(1-\gamma) / r+1}{q^{*} \gamma / p+q^{*}(1-\gamma) / r+1} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r+1\right) \\
& =\frac{I_{j}^{\prime}(1-\gamma)}{|\eta| p} B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r+1\right)=\frac{I_{j}^{\prime}(1-\gamma)}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) \\
& \\
& =\frac{1-\gamma}{n p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I .
\end{aligned}
$$

Again we obtain the same formulas for I_{1} and I_{2} as in the previous cases.
For $n=1$ Theorem 5 was proved in [10]. Analogously to Corollary 1 we obtain
Corollary 3. Assume that conditions of Theorem 5 hold. Then for all $x(\cdot)$ such that $x(\cdot) \in$ $L_{p}(T, \mu)$ and $\varphi_{j}(\cdot) x(\cdot) \in L_{r}(T, \mu), j=1, \ldots, n$, the sharp inequality

$$
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq K\|x(\cdot)\|_{L_{p}(T, \mu)}^{\gamma}\left(\max _{1 \leq j \leq n}\left\|\varphi_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\gamma}
$$

holds.
Let $|w(\cdot)|,\left|w_{0}(\cdot)\right|$ be homogenous functions of degrees θ, θ_{0}, respectively and $\left|w_{j}(\cdot)\right|$, $j=1, \ldots, n$, be homogenous functions of degree θ_{1}. We assume that $w(t), w_{0}(t) \neq 0$ and $\sum_{j=1}^{n}\left|w_{j}(t)\right| \neq 0$ for almost all $t \in T$. Define $\widetilde{w}(\cdot), \widetilde{w}_{0}(\cdot), \widetilde{w}_{1}(\cdot)$ by (32). Similar to Corollary 2 we obtain

Corollary 4. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}$ and $\widetilde{\gamma} \in(0,1)$ where $\widetilde{\gamma}$ is defined by (30). Assume that

$$
\widetilde{I}=\int_{\Omega} \frac{\widetilde{w}^{\widetilde{q}}(\omega)}{\widetilde{w}_{0}^{\widetilde{q} \widetilde{\gamma}}(\omega)\left(\sum_{k=1}^{n} \widetilde{w}_{k}^{r}(\omega)\right)^{\widetilde{q}(1-\widetilde{\gamma}) / r}} J(\omega) d \omega<\infty
$$

where

$$
\frac{1}{\widetilde{q}}=\frac{1}{q}-\frac{\widetilde{\gamma}}{p}-\frac{1-\widetilde{\gamma}}{r}
$$

and $\widetilde{I_{1}^{\prime}}=\ldots=\widetilde{I}_{n}^{\prime}$, where

$$
\widetilde{I}_{j}^{\prime}=\int_{\Omega} \frac{\widetilde{w}^{\widetilde{q}}(\omega) \widetilde{w}_{j}^{r}(\omega)}{\widetilde{w}_{0}^{\widetilde{q} \gamma}(\omega)\left(\sum_{k=1}^{n} \widetilde{w}_{k}^{r}(\omega)\right)^{\widetilde{q}(1-\widetilde{\gamma}) / r+1}} J(\omega) d \omega, j=1, \ldots, n
$$

Then for all $x(\cdot)$ such that $w_{0}(\cdot) x(\cdot) \in L_{p}(T, \mu)$ and $w_{j}(\cdot) x(\cdot) \in L_{r}(T, \mu), j=1, \ldots, n$, the sharp inequality

$$
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{K}\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)}^{\widetilde{\gamma}}\left(\max _{1 \leq j \leq n}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}\right)^{1-\tilde{\gamma}}
$$

holds, where

$$
\begin{equation*}
\widetilde{K}=\widetilde{\gamma}^{-\frac{\tilde{\gamma}}{p}}\left(\frac{1-\widetilde{\gamma}}{n}\right)^{-\frac{1-\tilde{\gamma}}{r}}\left(\frac{B(\widetilde{q} \widetilde{\gamma} / p, \widetilde{q}(1-\widetilde{\gamma}) / r) \widetilde{I}}{\widetilde{\theta}_{1}-\widetilde{\theta}_{0} \mid(\widetilde{\gamma} r+(1-\widetilde{\gamma}) p)}\right)^{1 / \widetilde{q}} . \tag{35}
\end{equation*}
$$

The statement of Corollary 4 for $(p, q, r) \in P$ and $n=1$ was proved in [2].
We give an example of weights for which conditions of Corollary 4 hold. Let $T=\mathbb{R}_{+}^{d}$, $\theta_{1}>0$,

$$
\begin{equation*}
w(t)=\left(t_{1}^{2}+\ldots+t_{d}^{2}\right)^{\theta / 2}, \quad w_{0}(t)=\left(t_{1}^{2}+\ldots+t_{d}^{2}\right)^{\theta_{0} / 2}, \quad w_{j}(t)=t_{j}^{\theta_{1}}, j=1, \ldots, d \tag{36}
\end{equation*}
$$

The condition $0<\widetilde{\gamma}<1$ is equivalent to inequalities $\widetilde{\theta}_{1}>\widetilde{\theta}>\widetilde{\theta}_{0}$ or $\widetilde{\theta}_{1}<\widetilde{\theta}<\widetilde{\theta}_{0}$. Therefore, we assume that for θ and θ_{0} inequalities $\theta_{1}+d(1 / r-1 / q)>\theta>\theta_{0}+d(1 / p-1 / q)$ or $\theta_{1}+d(1 / r-1 / q)<\theta<\theta_{0}+d(1 / p-1 / q)$ hold.

It is easy to check that $\widetilde{w}(\cdot)=\widetilde{w}_{0}(\cdot)=1$ and $\widetilde{w}_{j}(\omega)=\widetilde{t}_{j}^{\theta_{1}}(\omega), j=1, \ldots, d$, where

$$
\begin{aligned}
& \widetilde{t}_{1}(\omega)=\cos \omega_{1} \\
& \widetilde{t}_{2}(\omega)=\sin \omega_{1} \cos \omega_{2}
\end{aligned}
$$

$$
\begin{array}{r}
\widetilde{t}_{d-1}(\omega)=\sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \cos \omega_{d-1} \\
\widetilde{t}_{d}(\omega)=\sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1} .
\end{array}
$$

Note that

$$
\sum_{k=1}^{d} t_{k}^{2}(\omega)=1
$$

For \widetilde{I} we have

$$
\begin{equation*}
\widetilde{I}=\int_{\Pi_{+}^{d-1}} \frac{J(\omega) d \omega}{\left(\sum_{k=1}^{d} \widetilde{t}_{k}^{r \theta_{1}}(\omega)\right)^{\tilde{q}(1-\tilde{\gamma}) / r}}, \quad \Pi_{+}^{d-1}=[0, \pi / 2]^{d-1} \tag{37}
\end{equation*}
$$

If $r \theta_{1} \leq 2$, then

$$
\begin{equation*}
\sum_{k=1}^{d} \widetilde{t}_{k}^{r \theta_{1}}(\omega) \geq \sum_{k=1}^{d} \widetilde{t}_{k}^{2}(\omega)=1 \tag{38}
\end{equation*}
$$

For $r \theta_{1}>2$ by Hölder's inequality

$$
1=\sum_{k=1}^{d} \widetilde{t}_{k}^{2}(\omega) \leq\left(\sum_{k=1}^{d} \widetilde{t}_{k}^{r \theta_{1}}(\omega)\right)^{\frac{2}{r \theta_{1}}} d^{1-\frac{2}{r \theta_{1}}}
$$

Thus,

$$
\begin{equation*}
\sum_{k=1}^{d} \widetilde{t}_{k}^{r \theta_{1}}(\omega) \geq d^{1-\frac{r \theta_{1}}{2}} \tag{39}
\end{equation*}
$$

It follows by (38) and (39) that $\widetilde{I}<\infty$.
For $\widetilde{I}_{j}^{\prime}$ we have

$$
\widetilde{I}_{j}^{\prime}=\int_{\Pi_{+}^{d-1}} \frac{\widetilde{t}_{j}^{r \theta_{1}} J(\omega) d \omega}{\left(\sum_{k=1}^{d} \widetilde{t}_{k}^{r \theta_{1}}(\omega)\right)^{\widetilde{q}(1-\widetilde{\gamma}) / r+1}}, j=1, \ldots, d
$$

Consider the integrals

$$
L_{j}=\int_{\mathbb{R}_{+}^{d} \cap \mathbb{B}^{d}} \frac{\left(\sum_{k=1}^{d} t_{k}^{2}\right)^{\theta_{1} \widetilde{q}(1-\widetilde{\gamma}) / 2} t_{j}^{r \theta_{1}}}{\left(\sum_{k=1}^{d} t_{k}^{r \theta_{1}}\right)^{\widetilde{q}(1-\widetilde{\gamma}) / r+1}} d t, j=1, \ldots, d,
$$

where \mathbb{B}^{d} is the unit ball in \mathbb{R}^{d}. If we change variables in L_{j} changing places variables t_{j} and t_{k}, then L_{j} passes to L_{k}. Therefore, $L_{1}=\ldots=L_{d}$. Passing to the polar transformation we obtain that $L_{j}=\widetilde{I}_{j}^{\prime} / d, j=1, \ldots, d$. Consequently, $\widetilde{I}_{1}^{\prime}=\ldots=\widetilde{I}_{d}^{\prime}$.

Thus, we obtain
Corollary 5. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}, \theta_{1}>0, \theta$ and θ_{0} be such that $\theta_{1}+d(1 / r-1 / q)>$ $\theta>\theta_{0}+d(1 / p-1 / q)$ or $\theta_{1}+d(1 / r-1 / q)<\theta<\theta_{0}+d(1 / p-1 / q)$. Then for weights (36) and all $x(\cdot)$ for which $w_{0}(\cdot) x(\cdot) \in L_{p}\left(\mathbb{R}_{+}^{d}\right)$ and $w_{j}(\cdot) x(\cdot) \in L_{r}\left(\mathbb{R}_{+}^{d}\right), j=1, \ldots, d$, the sharp inequality

$$
\|w(\cdot) x(\cdot)\|_{L_{q}\left(\mathbb{R}_{+}^{d}\right)} \leq \widetilde{K}\left\|w_{0}(\cdot) x(\cdot)\right\|_{L_{p}\left(\mathbb{R}_{+}^{d}\right)}^{\widetilde{\gamma}}\left(\max _{1 \leq j \leq d}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}\left(\mathbb{R}_{+}^{d}\right)}\right)^{1-\widetilde{\gamma}}
$$

holds, where \widetilde{K} is defined by (35) in which the value \widetilde{I} is defined by (37).
We give one more example.
Corollary 6. Let $(p, q, r) \in P \cup P_{1} \cup P_{2}$, weights $w(\cdot)$, $w_{0}(\cdot)$, $w_{1}(\cdot)$ be defined by (36) for $\theta=d(1-1 / q), \theta_{0}=d-(\lambda+d) / p, \theta_{1}=d+(\mu-d) / r$, where $\lambda, \mu>0$. Put

$$
\alpha=\frac{\mu}{p \mu+r \lambda}, \quad \beta=\frac{\lambda}{p \mu+r \lambda} .
$$

Then for all $x(\cdot)$ such that $w_{0}(\cdot) x(\cdot) \in L_{p}\left(\mathbb{R}_{+}^{d}\right)$ and $w_{j}(\cdot) x(\cdot) \in L_{r}\left(\mathbb{R}_{+}^{d}\right), j=1, \ldots, d$, the sharp inequality

$$
\|w(\cdot) x(\cdot)\|_{L_{q}\left(\mathbb{R}_{+}^{d}\right)} \leq C\left\|w_{0}(\cdot) x(\cdot)\right\|_{L_{p}\left(\mathbb{R}_{+}^{d}\right)}^{p \alpha}\left(\max _{1 \leq j \leq d}\left\|\omega_{j}(\cdot) x(\cdot)\right\|_{L_{r}\left(\mathbb{R}_{+}^{d}\right)}\right)^{r \beta}
$$

holds, where

$$
C=\frac{d^{\beta}}{(p \alpha)^{\alpha}(r \beta)^{\beta}}\left(\frac{I}{\lambda+\mu} B\left(\frac{\alpha}{1 / q-\alpha-\beta}, \frac{\beta}{1 / q-\alpha-\beta}\right)\right)^{1 / q-\alpha-\beta}
$$

and

$$
I=\int_{\Pi_{+}^{d-1}} \frac{J(\omega) d \omega}{\left(\sum_{k=1}^{d} \tilde{t}_{k}^{r(d-1)+\mu}(\omega)\right)^{\frac{\beta}{1 / q-\alpha-\beta}}} .
$$

For $d=1, q=1$, and $(p, 1, r) \in P$ the statement of Corollary 6 was proved in [4].

6. Recovery of differential operators from a noisy Fourier transform

Let T be a cone in $\mathbb{R}^{d}, d \mu(t)=d t,|\psi(\cdot)|$ be homogenous function of degree $\eta,\left|\varphi_{j}(\cdot)\right|$, $j=1, \ldots, n$, be homogenous functions of degrees $\nu, \psi(t) \neq 0$ and $\sum_{j=1}^{n}\left|\varphi_{j}(t)\right| \neq 0$ for almost all $t \in T$.

Let S be the Schwartz space of rapidly decreasing C^{∞}-functions on $\mathbb{R}^{d}, S^{\prime}$ be the corresponding space of distributions, and let $F: S^{\prime} \rightarrow S^{\prime}$ be the Fourier transform. Set

$$
X_{p}=\left\{x(\cdot) \in S^{\prime}: \varphi_{j}(\cdot) F x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right), j=1, \ldots, n, F x(\cdot) \in L_{p}\left(\mathbb{R}^{d}\right)\right\}
$$

We define operators $D_{j}, j=1, \ldots, n$, as follows

$$
D_{j} x(\cdot)=F^{-1}\left(\varphi_{j}(\cdot) F x(\cdot)\right)(\cdot), j=1, \ldots, n .
$$

Put

$$
\begin{equation*}
\Lambda x(\cdot)=F^{-1}(\psi(\cdot) F x(\cdot))(\cdot) \tag{40}
\end{equation*}
$$

Consider the problem of the optimal recovery of values of the operator Λ on the class

$$
W_{p}^{\mathcal{D}}=\left\{x(\cdot) \in X_{p}:\left\|D_{j} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq 1, j=1, \ldots, n\right\}, \quad \mathcal{D}=\left(D_{1}, \ldots, D_{n}\right),
$$

from the noisy Fourier transform of the function $x(\cdot)$. We assume that for each $x(\cdot) \in W_{p}$ one knows a function $y(\cdot) \in L_{p}\left(\mathbb{R}^{d}\right)$ such that $\|F x(\cdot)-y(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta, \delta>0$. It is required to recover the function $\Lambda x(\cdot)$ from $y(\cdot)$. Assume that $\Lambda x(\cdot) \in L_{q}\left(\mathbb{R}^{d}\right)$ for all $x(\cdot) \in X_{p}$. As recovery methods we consider all possible mappings $m: L_{p}\left(\mathbb{R}^{d}\right) \rightarrow L_{q}\left(\mathbb{R}^{d}\right)$. The error of a method m is defined by

$$
e_{p q}(\Lambda, \mathcal{D}, m)=\sup _{\substack{x(\cdot) \in W_{p}^{\mathcal{D}}, y(\cdot) \in L_{p}\left(\mathbb{R}^{d}\right) \\\|F x(\cdot)-y(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta}}\|\Lambda x(\cdot)-m(y)(\cdot)\|_{L_{q}\left(\mathbb{R}^{d}\right)} .
$$

The quantity

$$
\begin{equation*}
E_{p q}(\Lambda, \mathcal{D})=\inf _{m: L_{p}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right)} e_{p q}(\Lambda, \mathcal{D}, m) \tag{41}
\end{equation*}
$$

is called the error of optimal recovery, and the method on which the infimum is attained, an optimal method

1. Recovery in the metric $L_{2}\left(\mathbb{R}^{d}\right)$. By Plancherels theorem,

$$
\|\Lambda x(\cdot)-m(y)(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}=\frac{1}{(2 \pi)^{d / 2}}\|\widetilde{L} x(\cdot)-F(m(y))(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}
$$

where $\widetilde{L} x(\cdot)=\psi(\cdot) F x(\cdot)$. Moreover,

$$
\left\|D_{j} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}=\frac{1}{(2 \pi)^{d / 2}}\left\|\varphi_{j}(\cdot) F x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}, j=1, \ldots, n
$$

So, the problem under consideration coincides, up to a factor of $(2 \pi)^{-d / 2}$, with problem (2) for $q=r=2$ with $\varphi_{j}(\cdot)$ replaced by $(2 \pi)^{-d / 2} \varphi_{j}(\cdot), j=1, \ldots, n$.

For $q=r=2$ we denote by $\widehat{\gamma}$ and \widehat{q}^{*} the values γ and q^{*}, which where defined by (23) and (33):

$$
\widehat{\gamma}=\frac{\nu-\eta}{\nu+d(1 / 2-1 / p)}, \quad \widehat{q}^{*}=\frac{1}{\widehat{\gamma}(1 / 2-1 / p)}
$$

Set

$$
C_{p}(\nu, \eta)=\widehat{\gamma}^{-\frac{\widehat{\gamma}}{p}}\left(\frac{1-\widehat{\gamma}}{n}\right)^{-\frac{1-\widehat{\gamma}}{2}}\left(\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p+1, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right)}{2|\nu-\eta|}\right)^{1 / \widehat{q}^{*}}
$$

Theorem 6. Let $2<p \leq \infty, \widehat{\gamma} \in(0,1)$. Assume that

$$
\begin{equation*}
I=\int_{\Pi^{d-1}} \frac{\widetilde{\psi}_{\widehat{q}^{*}}(\omega)}{\widetilde{s}_{2}^{\widehat{q}^{*}(1-\widehat{\gamma}) / 2}(\omega)} J(\omega) d \omega<\infty, \quad \Pi^{d-1}=[0, \pi]^{d-2} \times[0,2 \pi] \tag{42}
\end{equation*}
$$

and $I_{1}^{\prime}=\ldots=I_{n}^{\prime}$, where

$$
\begin{equation*}
I_{j}^{\prime}=\int_{\Pi^{d-1}} \frac{\widetilde{\psi}^{\widehat{q}^{*}}(\omega) \widetilde{\varphi}_{j}^{2}(\omega)}{\widetilde{s}_{2}^{\widehat{q}^{*}(1-\widehat{\gamma}) / 2+1}(\omega)} J(\omega) d \omega, j=1, \ldots, n \tag{43}
\end{equation*}
$$

Then

$$
\begin{equation*}
E_{p 2}(\Lambda, \mathcal{D})=\frac{1}{(2 \pi)^{d \hat{\gamma} / 2}} C_{p}(\nu, \eta) I^{1 / \widehat{q}^{*}} \delta^{\widehat{\gamma}} \tag{44}
\end{equation*}
$$

The method

$$
\begin{equation*}
\widehat{m}(y)(t)=F^{-1}\left(\left(1-\beta \frac{s_{2}(t)}{|\psi(t)|^{2}}\right)_{+} \psi(t) y(t)\right) \tag{45}
\end{equation*}
$$

where

$$
\beta=\frac{1-\widehat{\gamma}}{n(2 \pi)^{d \widehat{\gamma}}} C_{p}^{2}(\nu, \eta)\left(\delta I^{1 / 2-1 / p}\right)^{2 \widehat{\gamma}}
$$

is optimal.
Moreover, the sharp inequality
(46) $\|\Lambda x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}$

$$
\leq \frac{1}{(2 \pi)^{d \hat{\gamma} / 2}} C_{p}(\nu, \eta) I^{1 / \widehat{q}^{*}}\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)}^{\widehat{\gamma}}\left(\max _{1 \leq j \leq n}\left\|D_{j} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}\right)^{1-\widehat{\gamma}}
$$

holds.

Proof. Let $2<p<\infty$. By Theorem 5 we have

$$
E_{p 2}(\Lambda, \mathcal{D})=\frac{1}{(2 \pi)^{d \hat{\gamma} / 2}} K \delta^{\widehat{\gamma}}
$$

where

$$
K=\widehat{\gamma}^{-\frac{\widehat{\gamma}}{p}}\left(\frac{1-\widehat{\gamma}}{n}\right)^{-\frac{1-\hat{\gamma}}{2}}\left(\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right) I}{|\nu+d(1 / 2-1 / p)|(2 \widehat{\gamma}+(1-\widehat{\gamma}) p)}\right)^{1 / \widehat{q}^{*}}
$$

From the properties of the beta-function we find that

$$
\begin{align*}
& \frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right)}{|\nu+d(1 / 2-1 / p)|(2 \widehat{\gamma}+(1-\widehat{\gamma}) p)} \tag{47}\\
& =\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p+1, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right)\left(\widehat{q}^{*} \widehat{\gamma} / p+\widehat{q}^{*}(1-\widehat{\gamma}) / 2\right)}{|\nu+d(1 / 2-1 / p)|(2 \widehat{\gamma}+(1-\widehat{\gamma}) p) \widehat{q}^{*} \widehat{\gamma} / p} \\
& \quad=\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p+1, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right)}{2|\nu-\eta|}
\end{align*}
$$

Thus, equality (44) holds.
It follows by Theorem 5 that the method

$$
\widehat{m}(y)(t)=\left(1-\frac{\widehat{\xi}^{2} \widehat{\gamma} c_{2}(t)}{(2 \pi)^{d}|\psi(t)|^{2}}\right)_{+} \psi(t) y(t)
$$

where

$$
\widehat{\xi}=\delta(2 \pi)^{d \frac{1-\widehat{\gamma}}{2 \widehat{\gamma}}} \widehat{\gamma}^{-1 / p}\left(\frac{1-\widehat{\gamma}}{n}\right)^{1 / 2}\left(\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right) I}{|\nu+d(1 / 2-1 / p)|(2 \widehat{\gamma}+(1-\widehat{\gamma}) p)}\right)^{1 / 2-1 / p}
$$

is optimal. In view of (47) we obtain

$$
\begin{aligned}
& \frac{\widehat{\xi}^{2} \widehat{\gamma}}{(2 \pi)^{d}}=\frac{\delta^{2 \widehat{\gamma}} \widehat{\gamma}^{-2 \widehat{\gamma} / p}}{(2 \pi)^{d \widehat{\gamma}}}\left(\frac{1-\widehat{\gamma}}{n}\right)^{\widehat{\gamma}}\left(\frac{B\left(\widehat{q}^{*} \widehat{\gamma} / p+1, \widehat{q}^{*}(1-\widehat{\gamma}) / 2\right) I}{2|\nu-\eta|}\right)^{2 \widehat{\gamma}(1 / 2-1 / p)} \\
&=\frac{1-\widehat{\gamma}}{n(2 \pi)^{d \widehat{\gamma}}} C_{p}^{2}(\nu, \eta)\left(\delta I^{1 / 2-1 / p}\right)^{2 \widehat{\gamma}}
\end{aligned}
$$

Inequality (46) follows from Corollary 3. Consider the case $p=\infty$. It follows by Lemma 1 that

$$
\begin{equation*}
E_{\infty 2}(\Lambda, \mathcal{D}) \geq \sup _{\substack{x(\cdot) \in W_{\infty}^{\mathcal{D}} \\\|F x(\cdot)\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq \delta}}\|\Lambda x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} \tag{48}
\end{equation*}
$$

Let $\widehat{x}(\cdot)$ be such that

$$
F \widehat{x}(\xi)= \begin{cases}\delta, & |\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)} \\ 0, & |\psi(\xi)| \leq \lambda \sqrt{s_{2}(\xi)}\end{cases}
$$

We show that $\lambda>0$ may be selected from the condition

$$
\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|\varphi_{j}(\xi)\right|^{2}|F \widehat{x}(\xi)|^{2} d \xi=1, j=1, \ldots, n
$$

Thus, $\lambda>0$ should be chosen from the condition

$$
\delta^{2} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}\left|\varphi_{j}(\xi)\right|^{2} d \xi=(2 \pi)^{d}
$$

Passing to the polar transformation for $\nu>\eta$ we obtain

$$
\delta^{2} \int_{\Pi_{d-1}} \widetilde{\varphi}_{j}^{2}(\omega) J(\omega) d \omega \int_{0}^{\Phi_{1}(\omega)} \rho^{2 \nu+d-1} d \rho=(2 \pi)^{d}, \quad \Phi_{1}(\omega)=\left(\frac{\widetilde{\psi}(\omega)}{\lambda \sqrt{\widetilde{s}_{2}(\xi)}}\right)^{\frac{1}{\nu-\eta}}
$$

If $\nu<\eta$, then $2 \nu+d<0$ (since $\widehat{\gamma} \in(0,1))$ and we have

$$
\delta^{2} \int_{\Pi_{d-1}} \widetilde{\varphi}_{j}^{2}(\omega) J(\omega) d \omega \int_{\Phi_{1}(\omega)}^{+\infty} \rho^{2 \nu+d-1} d \rho=(2 \pi)^{d}
$$

Hence

$$
\frac{\delta^{2}}{|2 \nu+d|} \lambda^{-\frac{2 \nu+d}{\nu-\eta}} I_{j}^{\prime}=(2 \pi)^{d}
$$

As already noted, it follows from the equality $I_{1}^{\prime}+\ldots+I_{n}^{\prime}=I$ that $I_{j}^{\prime}=I / n, j=1, \ldots, n$. Consequently,

$$
\lambda=\left(\frac{\delta^{2} I}{(2 \pi)^{d} n|2 \nu+d|}\right)^{\frac{\nu-\eta}{2 \nu+d}} .
$$

It is easily checked that

$$
C_{\infty}^{2}(\nu, \eta)=\frac{1}{|2 \eta+d|}(n|2 \nu+d|)^{\frac{\eta+d / 2}{\nu+d / 2}} .
$$

As a result, $\lambda^{2}=\beta$. In view of (48), using calculations similar to those that were above, we obtain

$$
\begin{align*}
E_{\infty 2}^{2}(\Lambda, \mathcal{D}) \geq\|\Lambda \widehat{x}(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}= & \frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}|\psi(\xi)|^{2} d \xi \tag{49}\\
& =\frac{\delta^{2}}{|2 \eta+d|(2 \pi)^{d}} \lambda^{-\frac{2 \eta+d}{\nu-\eta}} I=\frac{1}{(2 \pi)^{d \widehat{\gamma}}} C_{\infty}^{2}(\nu, \eta) I^{2 / \widehat{q}^{*}} \delta^{2 \widehat{\gamma}}
\end{align*}
$$

We estimate the error of the method (45). Put

$$
a(\xi)=\left(1-\beta \frac{s_{2}(\xi)}{|\psi(\xi)|^{2}}\right)_{+}
$$

Taking the Fourier transform we obtain

$$
\|\Lambda x(\cdot)-\widehat{m}(y)(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}|\psi(\xi)|^{2}|F x(\xi)-a(\xi) y(\xi)|^{2} d \xi
$$

We set $z(\cdot)=F x(\cdot)-y(\cdot)$ and note that

$$
\|z(\cdot)\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq \delta, \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|\varphi_{j}(\xi)\right|^{2}|F x(\xi)|^{2} d \xi \leq 1, j=1, \ldots, n
$$

Hence

$$
\|\Lambda x(\cdot)-\widehat{m}(y)(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}|\psi(\xi)|^{2}|(1-a(\xi)) F x(\xi)+a(\xi) z(\xi)|^{2} d \xi
$$

The integrand can be written as

$$
\left|\frac{|\psi(\xi)|(1-a(\xi)) \sqrt{\beta s_{2}(\xi)} F x(\xi)}{\sqrt{\beta s_{2}(\xi)}}+\sqrt{a(\xi)} \sqrt{a(\xi)}\right| \psi(\xi)|z(\xi)|^{2}
$$

Using the Cauchy-Bunyakovskii-Schwarz inequality

$$
|a b+c d|^{2} \leq\left(|a|^{2}+|c|^{2}\right)\left(|b|^{2}+|d|^{2}\right)
$$

we obtain the estimate

$$
\|\Lambda x(\cdot)-\widehat{m}(y)(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2} \leq \operatorname{vraisup}_{\xi \in \mathbb{R}^{d}} S(\xi) \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(\beta s_{2}(\xi)|F x(\xi)|^{2}+a(\xi)|\psi(\xi)|^{2}|z(\xi)|^{2}\right) d \xi
$$

where

$$
S(\xi)=\frac{|\psi(\xi)|^{2} \mid(1-a(\xi))^{2}}{\beta s_{2}(\xi)}+a(\xi)
$$

If $|\psi(\xi)|^{2} \leq \beta s_{2}(\xi)$, then $a(\xi)=0$ and $S(\xi) \leq 1$. If $|\psi(\xi)|^{2}>\beta s_{2}(\xi)$, then $S(\xi)=1$. So we have

$$
\begin{aligned}
& e_{\infty 2}^{2}(\Lambda, \mathcal{D}, \widehat{m}) \leq \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(\beta s_{2}(\xi)|F x(\xi)|^{2}+a(\xi)|\psi(\xi)|^{2}|z(\xi)|^{2}\right) d \xi \leq n \beta \\
& +\frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}\left(|\psi(\xi)|^{2}-\beta s_{2}(\xi)\right) d \xi=n \beta+\frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}|\psi(\xi)|^{2} d \xi \\
& \quad-\beta \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} s_{2}(\xi)|F \widehat{x}(\xi)|^{2} d \xi=\frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}|\psi(\xi)|^{2} d \xi \leq E_{\infty 2}^{2}(\Lambda, \mathcal{D})
\end{aligned}
$$

It follows that the method $\widehat{m}(y)(\cdot)$ is optimal. Moreover, by (49) we have

$$
E_{\infty 2}^{2}(\Lambda, \mathcal{D})=\frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|>\lambda \sqrt{s_{2}(\xi)}}|\psi(\xi)|^{2} d \xi=\frac{1}{(2 \pi)^{d \widehat{\gamma}}} C_{\infty}^{2}(n, k) I^{2 / \widehat{q}^{*}} \delta^{2 \widehat{\gamma}}
$$

Similar to the proof of Corollary 1 we prove that for $p=\infty$ inequality (46) is sharp .
Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}_{+}^{d}$. We define the operator D^{α} (the derivative of order α) by

$$
D^{\alpha} x(\cdot)=F^{-1}\left((i \xi)^{\alpha} F x(\xi)\right)(\cdot)
$$

where $(i \xi)^{\alpha}=\left(i \xi_{1}\right)^{\alpha_{1}} \ldots\left(i \xi_{d}\right)^{\alpha_{d}}$.
Consider problem (41) for $D_{j}=D^{\nu e_{j}}, j=1, \ldots, d$, where $e_{j}, j=1 \ldots, d$, is a standard basis in \mathbb{R}^{d}, and Λ defined by (40). Assume that $\psi(\cdot)$ has the following symmetry property

$$
\psi\left(\ldots, \xi_{j}, \ldots, \xi_{m}, \ldots\right)=\psi\left(\ldots, \xi_{m}, \ldots, \xi_{j}, \ldots\right), \quad 1 \leq j, m \leq d
$$

Moreover, we assume that $\widetilde{\psi}(\cdot)$ is continuous function on Π^{d-1}.
In this case for (42) and (43) we have

$$
\begin{align*}
I & =\int_{\Pi^{d-1}} \frac{\widetilde{\psi}^{\widetilde{q}^{*}}(\omega) J(\omega) d \omega}{\left(\sum_{k=1}^{d} \widetilde{t}_{k}^{2 \nu}(\omega)\right)^{\widetilde{q}^{*}(1-\widehat{\gamma}) / 2}} \tag{50}\\
I_{j}^{\prime} & =\int_{\Pi^{d-1}} \frac{\widetilde{\psi}^{\widetilde{q}^{*}}(\omega) \widetilde{t}_{j}^{2 \nu}(\omega) J(\omega) d \omega}{\left(\sum_{k=1}^{d} \widetilde{t}_{k}^{2 \nu}(\omega)\right)^{\widetilde{q}^{*}(1-\widehat{\gamma}) / 2+1}}, j=1, \ldots, d
\end{align*}
$$

Similar to how it was done for weights (36) we prove that $I<\infty$ and $I_{1}^{\prime}=\ldots=I_{d}^{\prime}$. Thus, from Theorem 6 we obtain

Corollary 7. Let $2<p \leq \infty$ and $\nu>\eta \geq 0$. Then

$$
E_{p 2}\left(\Lambda,\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right)=\frac{1}{(2 \pi)^{d \hat{\gamma} / 2}} C_{p}(\nu, \eta) I^{1 / \widetilde{q}^{*}} \delta^{\widehat{\gamma}}
$$

where I is defined by (50). The method

$$
\widehat{m}(y)(t)=F^{-1}\left(\left(1-\beta \frac{\sum_{j=1}^{d}\left|t_{j}\right|^{2 \nu}}{|\psi(t)|^{2}}\right)_{+} \psi(t) y(t)\right)
$$

where

$$
\beta=\frac{1-\widehat{\gamma}}{d(2 \pi)^{d}} C_{p}^{2}(\nu, \eta)\left(\delta I^{1 / 2-1 / p}\right)^{2 \widehat{\gamma}}
$$

is optimal.
The sharp inequality

$$
\|\Lambda x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq \frac{1}{(2 \pi)^{d \widehat{\gamma} / 2}} C_{p}(\nu, \eta) I^{1 / \widehat{q}^{*}}\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)}^{\widehat{\gamma}}\left(\max _{1 \leq j \leq d}\left\|D^{\nu e_{j}} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}\right)^{1-\widehat{\gamma}}
$$

holds.
As functions $\psi(\cdot)$ defining the operator Λ we can consider the functions

$$
\psi_{\theta}(\xi)=\left(\left|\xi_{1}\right|^{\theta}+\ldots+\left|\xi_{d}\right|^{\theta}\right)^{2 / \theta}, \quad \theta>0
$$

The corresponding operator is denoted by Λ_{θ}. In particular, $\Lambda_{2}=-\Delta$, where Δ is the Laplace operator. We denote by $\Lambda_{\theta}^{\eta / 2}$ the operator Λ which is defined by $\psi(\cdot)=\psi_{\theta}^{\eta / 2}(\cdot)$.

Now we consider the case when $p=2$.
Theorem 7. Let $\nu>\eta>0, \nu \geq 1$, and $0<\theta \leq 2 \nu$. Then

$$
\begin{equation*}
E_{22}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right)=d^{\eta / \theta}\left(\frac{\delta}{(2 \pi)^{d / 2}}\right)^{1-\eta / \nu} \tag{51}
\end{equation*}
$$

and all methods

$$
\begin{equation*}
\widehat{m}(y)(t)=F^{-1}\left(a(t) \psi_{\theta}^{\eta / 2}(t) y(t)\right) \tag{52}
\end{equation*}
$$

where $a(\cdot)$ are measurable functions satisfying the condition

$$
\begin{equation*}
\psi_{\theta}^{\eta}(\xi)\left(\frac{|1-a(\xi)|^{2}}{\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}}+\frac{|a(\xi)|^{2}}{(2 \pi)^{d} \lambda_{1}}\right) \leq 1 \tag{53}
\end{equation*}
$$

in which

$$
\lambda_{1}=\frac{d^{2 \eta / \theta}}{(2 \pi)^{d}}\left(1-\frac{\eta}{\nu}\right)\left(\frac{(2 \pi)^{d}}{\delta^{2}}\right)^{\eta / \nu}, \quad \lambda_{2}=\frac{\eta}{\nu} d^{2 \eta / \theta-1}\left(\frac{(2 \pi)^{d}}{\delta^{2}}\right)^{\eta / \nu-1}
$$

are optimal.
The sharp inequality

$$
\begin{equation*}
\left\|\Lambda_{\theta}^{\eta / 2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq \frac{d^{\eta / \theta}}{(2 \pi)^{d(1-\eta / \nu) / 2}}\|F x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\eta / \nu}\left(\max _{1 \leq j \leq d}\left\|D^{\nu e_{j}} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}\right)^{1-\eta / \nu} \tag{54}
\end{equation*}
$$

holds.
Proof. It follows by Lemma 1 that

$$
\begin{equation*}
E_{22}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right) \geq \sup _{\substack{x(\cdot) \in W_{2}^{\left(D^{\nu} e_{1}, \ldots, D^{\left.\nu e_{d}\right)}\right.} \\\|F x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq \delta}}\left\|\Lambda_{\theta}^{\eta / 2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \tag{55}
\end{equation*}
$$

Given $0<\varepsilon<(2 \pi)^{d /(2 \nu)} \delta^{-1 / \nu}$, we set

$$
\widehat{\xi}_{\varepsilon}=\left(\frac{(2 \pi)^{d}}{\delta^{2}}\right)^{\frac{1}{2 \nu}}(1, \ldots, 1)-(\varepsilon, \ldots, \varepsilon), \quad B_{\varepsilon}=\left\{\xi \in \mathbb{R}^{d}:\left|\xi-\widehat{\xi}_{\varepsilon}\right|<\varepsilon\right\}
$$

Consider a function $x_{\varepsilon}(\cdot)$ such that

$$
F x_{\varepsilon}(\xi)= \begin{cases}\frac{\delta}{\sqrt{\operatorname{mes} B_{\varepsilon}}}, & \xi \in B_{\varepsilon} \tag{56}\\ 0, & \xi \notin B_{\varepsilon}\end{cases}
$$

Then $\left\|F x_{\varepsilon}(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\delta^{2}$ and

$$
\left\|D^{\nu e_{j}} x_{\varepsilon}(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\frac{\delta^{2}}{(2 \pi)^{d} \operatorname{mes} B_{\varepsilon}} \int_{B_{\varepsilon}}\left|\xi_{j}\right|^{2 \nu} d \xi \leq 1, j=1, \ldots, d
$$

By virtue of (55) we have

$$
\begin{aligned}
& E_{22}^{2}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right) \geq\left\|\Lambda_{\theta}^{\eta / 2} x_{\varepsilon}(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2} \\
&=\frac{\delta^{2}}{(2 \pi)^{d} \operatorname{mes} B_{\varepsilon}} \int_{B_{\varepsilon}} \psi_{\theta}^{\eta}(\xi) d \xi=\frac{\delta^{2}}{(2 \pi)^{d}} \psi_{\theta}^{\eta}\left(\widetilde{\xi}_{\varepsilon}\right), \quad \widetilde{\xi}_{\varepsilon} \in B_{\varepsilon}
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ we obtain the estimate

$$
\begin{equation*}
E_{22}^{2}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right) \geq d^{2 \eta / \theta}\left(\frac{\delta^{2}}{(2 \pi)^{d}}\right)^{1-\eta / \nu} \tag{57}
\end{equation*}
$$

We will find optimal methods among methods (52). Passing to the Fourier transform we have

$$
\left\|\Lambda_{\theta}^{\eta / 2} x(\cdot)-\widehat{m}(y)(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \psi_{\theta}^{\eta}(\xi)|F x(\xi)-a(\xi) y(\xi)|^{2} d \xi
$$

We set $z(\cdot)=F x(\cdot)-y(\cdot)$ and note that

$$
\int_{\mathbb{R}^{d}}|z(\xi)|^{2} d \xi \leq \delta^{2}, \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|\xi_{j}\right|^{2 \nu}|F x(\xi)|^{2} d \xi \leq 1, j=1, \ldots, d
$$

Then

$$
\left\|\Lambda_{\theta}^{\eta / 2} x(\cdot)-\widehat{m}(y)(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \psi_{\theta}^{\eta}(\xi)|(1-a(\xi)) F x(\xi)+a(\xi) z(\xi)|^{2} d \xi
$$

We write the integrand as

$$
\psi_{\theta}^{\eta}(\xi)\left|\frac{(1-a(\xi)) \sqrt{\lambda_{2}}\left(\sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}\right)^{1 / 2} F x(\xi)}{\sqrt{\lambda_{2}}\left(\sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}\right)^{1 / 2}}+\frac{a(\xi)}{(2 \pi)^{d / 2} \sqrt{\lambda_{1}}}(2 \pi)^{d / 2} \sqrt{\lambda_{1}} z(\xi)\right|^{2}
$$

Applying the Cauchy-Bunyakovskii-Schwarz inequality we obtain the estimate

$$
\begin{aligned}
& \left\|\Lambda_{\theta}^{\eta / 2} x(\cdot)-\widehat{m}(y)(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2} \\
& \quad \leq \operatorname{vraisup}_{\xi \in \mathbb{R}^{d}} S(\xi) \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}|F x(\xi)|^{2}+(2 \pi)^{d} \lambda_{1}|z(\xi)|^{2}\right) d \xi
\end{aligned}
$$

where

$$
S(\xi)=\psi_{\theta}^{\eta}(\xi)\left(\frac{|1-a(\xi)|^{2}}{\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}}+\frac{|a(\xi)|^{2}}{(2 \pi)^{d} \lambda_{1}}\right)
$$

If we assume that $S(\xi) \leq 1$ for almost all ξ, then taking into account (57), we get

$$
\begin{aligned}
e_{22}^{2}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right), \widehat{m}\right) \leq \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}|F x(\xi)|^{2}+(2 \pi)^{d} \lambda_{1}|z(\xi)|^{2}\right) d \xi \\
\leq \lambda_{2} d+\lambda_{1} \delta^{2}=d^{2 \eta / \theta}\left(\frac{\delta^{2}}{(2 \pi)^{d}}\right)^{1-\eta / \nu} \leq E_{22}^{2}\left(\Lambda_{\theta}^{\eta / 2},\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)\right)
\end{aligned}
$$

This proves (51) and shows that the methods under consideration are optimal.
It remains to verify that the set of functions $a(\cdot)$ satisfying (53) is nonempty. Put

$$
a(\xi)=\frac{(2 \pi)^{d} \lambda_{1}}{(2 \pi)^{d} \lambda_{1}+\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}}
$$

Then

$$
S(\xi)=\frac{\psi_{\theta}^{\eta}(\xi)}{(2 \pi)^{d} \lambda_{1}+\lambda_{2} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}}
$$

Since $\theta \leq 2 \nu$ by Hölder's inequality

$$
\sum_{j=1}^{d}\left|\xi_{j}\right|^{\theta} \leq\left(\sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu}\right)^{\theta /(2 \nu)} d^{1-\theta /(2 \nu)}
$$

Putting $\rho=\left(\left|\xi_{1}\right|^{\theta}+\ldots+\left|\xi_{d}\right|^{\theta}\right)^{1 / \theta}$, we obtain

$$
\sum_{j=1}^{d}\left|\xi_{j}\right|^{2 \nu} \geq \rho^{2 \nu} d^{1-2 \nu / \theta}
$$

Thus,

$$
S(\xi) \leq \frac{\rho^{2 \eta}}{(2 \pi)^{d} \lambda_{1}+\lambda_{2} \rho^{2 \nu} d^{1-2 \nu / \theta}}
$$

It is easily checked that the function $f(\rho)=(2 \pi)^{d} \lambda_{1}+\lambda_{2} \rho^{2 \nu} d^{1-2 \nu / \theta}-\rho^{2 \eta}$ reaches a minimum on $[0,+\infty)$ at

$$
\rho_{0}=d^{1 / \theta}\left(\frac{(2 \pi)^{d}}{\delta^{2}}\right)^{1 /(2 \nu)}
$$

Moreover, $f\left(\rho_{0}\right)=0$. Consequently, $f(\rho) \geq 0$ for all $\rho \geq 0$. Hence $S(\xi) \leq 1$ for all ξ.
Inequality (54) is proved by the analogy with the proof of Corollary 1.
2. Recovery in the metric $L_{\infty}\left(\mathbb{R}^{d}\right)$. Put

$$
\begin{gathered}
\gamma_{1}=\frac{\nu-\eta-d / 2}{\nu+d(1 / 2-1 / p)}, \quad q_{1}=\frac{1}{1 / 2+\gamma_{1}(1 / 2-1 / p)} \\
\widetilde{C}_{p}(\nu, \eta)=\gamma_{1}^{-\frac{\gamma_{1}}{p}}\left(\frac{1-\gamma_{1}}{n}\right)^{-\frac{1-\gamma_{1}}{2}}\left(\frac{B\left(q_{1} \gamma_{1} / p+1, q_{1}\left(1-\gamma_{1}\right) / 2\right)}{2|\nu-\eta-d / 2|}\right)^{1 / q_{1}}
\end{gathered}
$$

For $1<p<\infty$ we define $k(\cdot)$ by the equality

$$
\frac{k(t)}{(1-k(t))^{p-1}}=(2 \pi)^{d} \frac{|\psi(t)|^{p-2}}{s_{2}^{p-1}(t)} .
$$

We set

$$
k(t)= \begin{cases}\min \left\{1,(2 \pi)^{d}|\psi(t)|^{-1}\right\}, & p=1 \\ \left(1-s_{2}(t)|\psi(t)|^{-1}\right)_{+}, & p=\infty\end{cases}
$$

Theorem 8. Let $1 \leq p \leq \infty, \gamma_{1} \in(0,1)$. Assume that

$$
I=\int_{\Pi^{d-1}} \frac{\widetilde{\psi}^{q_{1}}(\omega)}{\widetilde{s}_{2}^{q_{1}\left(1-\gamma_{1}\right) / 2}(\omega)} J(\omega) d \omega<\infty
$$

and $I_{1}^{\prime}=\ldots=I_{n}^{\prime}$, where

$$
I_{j}^{\prime}=\int_{\Pi^{d-1}} \frac{\widetilde{\psi}^{q_{1}}(\omega) \widetilde{\varphi}_{j}^{2}(\omega)}{\widetilde{s}_{2}^{q_{1}\left(1-\gamma_{1}\right) / 2+1}(\omega)} J(\omega) d \omega, j=1, \ldots, n
$$

Then

$$
E_{p \infty}(\Lambda, \mathcal{D})=\frac{1}{(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}} \widetilde{C}_{p}(\nu, \eta) I^{1 / q_{1}} \delta^{\gamma_{1}}
$$

The method

$$
\widehat{m}(y)(t)=F^{-1}\left(k\left(\xi_{1}^{\frac{1}{n+d(1 / 2-1 / p)}} t\right) \psi(t) y(t)\right)
$$

where

$$
\xi_{1}=\delta \gamma_{1}^{-\frac{q_{1}}{2 p}}\left(\frac{\left(1-\gamma_{1}\right) \widetilde{C}_{p}(\nu, \eta) I^{1 / q_{1}}}{n(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}}\right)^{q_{1}(1 / 2-1 / p)}
$$

is optimal.
The sharp inequality

$$
\begin{equation*}
\|\Lambda x(\cdot)\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{1}{(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}} \widetilde{C}_{p}(\nu, \eta) I^{1 / q_{1}}\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)}^{\gamma_{1}}\left(\max _{1 \leq j \leq n}\left\|D_{j} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}\right)^{1-\gamma_{1}} \tag{58}
\end{equation*}
$$

holds.
Proof. Using an estimate similar to (48) we have

$$
E_{p \infty}(\Lambda, \mathcal{D}) \geq \sup _{\substack{x(\cdot) \in W_{p}^{\mathcal{D}} \\\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta}}\|\Lambda x(\cdot)\|_{L_{\infty}\left(\mathbb{R}^{d}\right)}
$$

Assume that $x(\cdot) \in W_{p}^{\mathcal{D}}$ and $\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta$. If $\widehat{x}(\cdot)$ is such that $F \widehat{x}(\xi)=$ $\varepsilon(\xi) e^{-i\langle t, \xi\rangle} F x(\xi)$, where

$$
\varepsilon(\xi)= \begin{cases}\frac{\overline{\psi(\xi) F x(\xi)}}{\overline{|\psi(\xi) F x(\xi)|},} & \psi(\xi) F x(\xi) \neq 0 \\ 0, & \psi(\xi) F x(\xi)=0\end{cases}
$$

then we obtain $\widehat{x}(\cdot) \in W_{p}^{\mathcal{D}},\|F \widehat{x}(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta$ and

$$
\left|\int_{\mathbb{R}^{d}} \psi(\xi) F \widehat{x}(\xi) e^{i\langle t, \xi\rangle} d \xi\right|=\int_{\mathbb{R}^{d}}|\psi(\xi) F x(\xi)| d \xi
$$

Hence

$$
\begin{equation*}
E_{p \infty}(\Lambda, \mathcal{D}) \geq \frac{1}{(2 \pi)^{d}} \sup _{\substack{x(\cdot) \in W_{p}^{\mathcal{D}} \\\|F x(\cdot)\|_{L_{p}\left(\mathbb{R}^{d}\right)} \leq \delta}} \int_{\mathbb{R}^{d}}|\psi(\xi) F x(\xi)| d \xi \tag{59}
\end{equation*}
$$

Let $1 \leq p<\infty$. It follows from (20) that

$$
E_{p \infty}(\Lambda, \mathcal{D}) \geq E(p, 1,2)
$$

where, in the problem of the evaluation of $E(p, 1,2)$, the functions $\varphi_{j}(\cdot)$ should be replaced by the function $(2 \pi)^{-d / 2} \varphi_{j}(\cdot)$, and the function $\psi(\cdot)$ by $(2 \pi)^{-d} \psi(\cdot)$. From Theorem 5 we obtain

$$
E_{p \infty}(\Lambda, \mathcal{D}) \geq \frac{1}{(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}} K \delta^{\gamma_{1}}
$$

where

$$
K=\gamma_{1}^{-\frac{\gamma_{1}}{p}}\left(\frac{1-\gamma_{1}}{n}\right)^{-\frac{1-\gamma_{1}}{2}}\left(\frac{B\left(q_{1} \gamma_{1} / p, q_{1}\left(1-\gamma_{1}\right) / 2\right) I}{|\nu+d(1 / 2-1 / p)|\left(2 \gamma_{1}+\left(1-\gamma_{1}\right) p\right)}\right)^{1 / q_{1}}
$$

From the properties of the beta-function

$$
\begin{aligned}
& \frac{B\left(q_{1} \gamma_{1} / p, q_{1}\left(1-\gamma_{1}\right) / 2\right)}{|\nu+d(1 / 2-1 / p)|\left(2 \gamma_{1}+\left(1-\gamma_{1}\right) p\right)} \\
&=\frac{B\left(q_{1} \gamma_{1} / p+1, q_{1}\left(1-\gamma_{1}\right) / 2\right)\left(q_{1} \gamma_{1} / p+q_{1}\left(1-\gamma_{1}\right) / 2\right)}{|\nu+d(1 / 2-1 / p)|\left(2 \gamma_{1}+\left(1-\gamma_{1}\right) p\right) q_{1} \gamma_{1} / p} \\
&=\frac{B\left(q_{1} \gamma_{1} / p+1, q_{1}\left(1-\gamma_{1}\right) / 2\right)}{2|\nu-\eta-d / 2|}
\end{aligned}
$$

Thus,

$$
E_{p \infty}(\Lambda, \mathcal{D}) \geq \frac{1}{(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}} \widetilde{C}_{p}(\nu, \eta) I^{1 / q_{1}} \delta^{\gamma_{1}}
$$

Moreover, it follows from the same Theorem 5 that

$$
\int_{\mathbb{R}^{d}}\left|\frac{1}{(2 \pi)^{d}} \psi(\xi) F(\xi)-m(y)(\xi)\right| d \xi \leq E(p, 1,2)
$$

where

$$
m(y)(t)=\frac{1}{(2 \pi)^{d}} k\left(\xi_{1}^{\frac{1}{\nu+d(1 / 2-1 / p)}} t\right) \psi(t) y(t)
$$

and

$$
\begin{array}{r}
\xi_{1}=\frac{\delta}{\gamma_{1}^{1 / p}}\left(\frac{1-\gamma_{1}}{n}\right)^{1 / 2}\left(\frac{B\left(q_{1} \gamma_{1} / p, q_{1}\left(1-\gamma_{1}\right) / 2\right) I(2 \pi)^{-d q_{1}\left(1+\gamma_{1}\right) / 2}}{|\nu+d(1 / 2-1 / p)|\left(2 \gamma_{1}+\left(1-\gamma_{1}\right) p\right)}\right)^{1 / 2-1 / p} \\
=\delta \gamma_{1}^{-\frac{q_{1}}{2 p}}\left(\frac{\left(1-\gamma_{1}\right) \widetilde{C}_{p}(\nu, \eta) I^{1 / q_{1}}}{n(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}}\right)^{q_{1}(1 / 2-1 / p)}
\end{array}
$$

Consequently,

$$
\begin{aligned}
\left\lvert\, \frac{1}{(2 \pi)^{d}}\right. & \int_{\mathbb{R}^{d}} \psi(\xi) F(\xi) e^{i\langle t, \xi\rangle} d \xi-\int_{\mathbb{R}^{d}} m(y)(\xi) e^{i\langle t, \xi\rangle} d \xi \mid \\
& \leq \int_{\mathbb{R}^{d}}\left|\frac{1}{(2 \pi)^{d}} \psi(\xi) F(\xi)-m(y)(\xi)\right| d \xi \leq E(p, 1,2) \leq E_{p \infty}(\Lambda, \mathcal{D})
\end{aligned}
$$

It follows that the method $\widehat{m}(y)(\cdot)$ is optimal, and the error of optimal recovery coincides with $E(p, 1,2)$.

Now we consider the case when $p=\infty$. Put

$$
s(\xi)= \begin{cases}\frac{\psi(\xi)}{|\psi(\xi)|}, & \psi(\xi) \neq 0 \\ 1, & \psi(\xi)=0\end{cases}
$$

Let $\widehat{x}(\cdot)$ be such that

$$
F \widehat{x}(\xi)= \begin{cases}\delta \overline{s(\xi)}, & |\psi(\xi)| \geq \lambda s_{2}(\xi) \\ \frac{\delta \overline{\psi(\xi)}}{\lambda s_{2}(\xi)}, & |\psi(\xi)|<\lambda s_{2}(\xi)\end{cases}
$$

We choose $\lambda>0$ such that

$$
\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|\varphi_{j}(\xi)\right|^{2}|F \widehat{x}(\xi)|^{2} d \xi=1, \quad j=1, \ldots, n
$$

Now, to find λ we have the equation

$$
\frac{\delta^{2}}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left|\varphi_{j}(\xi)\right|^{2} d \xi+\frac{\delta^{2} \lambda^{-2}}{(2 \pi)^{d}} \int_{|\psi(\xi)|<\lambda s_{2}(\xi)} \frac{\left|\varphi_{j}(\xi)\right|^{2}|\psi(\xi)|^{2}}{s_{2}^{2}(\xi)} d \xi=1 .
$$

If $\nu>\eta+d / 2$, then from the fact that $\gamma_{1} \in(0,1)$ it follows that $\eta>-d$. In this case it is easy to check that $2 \nu>\eta$ and $2 \nu+d>0$. Passing to the polar transformation we obtain

$$
\begin{aligned}
\frac{\delta^{2}}{(2 \pi)^{d}} \int_{\Pi_{d-1}} \widetilde{\varphi}_{j}^{2}(\omega) J(\omega) d \omega & \int_{0}^{\Phi_{2}(\omega)} \rho^{2 \nu+d-1} d \rho \\
& +\frac{\delta^{2} \lambda^{-2}}{(2 \pi)^{d}} \int_{\Pi_{d-1}} \frac{\widetilde{\varphi}_{j}^{2}(\omega) \widetilde{\psi}^{2}(\omega)}{\widetilde{s}_{2}^{2}(\omega)} J(\omega) d \omega \int_{\Phi_{2}(\omega)}^{+\infty} \rho^{-2 \nu+2 \eta+d-1} d \rho=1,
\end{aligned}
$$

where

$$
\Phi_{2}(\omega)=\left(\frac{\widetilde{\psi}(\omega)}{\lambda \widetilde{s}_{2}(\omega)}\right)^{\frac{1}{2 \nu-\eta}}
$$

Thus,

$$
\frac{\delta^{2}}{(2 \pi)^{d}} \lambda^{-\frac{2 \nu+d}{2 \nu-\eta}} \frac{4 \nu-2 \eta}{(2 \nu+d)(2 \nu-2 \eta-d)} I_{j}=1
$$

If $\nu<\eta+d / 2$, then it follows from $\gamma_{1} \in(0,1)$ that $\eta<-d, 2 \nu<\eta$, and $2 \nu+d<0$. Passing to the polar transformation we obtain

$$
\begin{aligned}
\frac{\delta^{2}}{(2 \pi)^{d}} \int_{\Pi_{d-1}} \widetilde{\varphi}_{j}^{2}(\omega) J(\omega) & d \omega \int_{\Phi_{2}(\omega)}^{+\infty} \rho^{2 \nu+d-1} d \rho \\
& +\frac{\delta^{2} \lambda^{-2}}{(2 \pi)^{d}} \int_{\Pi_{d-1}} \frac{\widetilde{\varphi}_{j}^{2}(\omega) \widetilde{\psi}^{2}(\omega)}{\widetilde{s}_{2}^{2}(\omega)} J(\omega) d \omega \int_{0}^{\Phi_{2}(\omega)} \rho^{-2 \nu+2 \eta+d-1} d \rho=1,
\end{aligned}
$$

For this case we have

$$
\frac{\delta^{2}}{(2 \pi)^{d}} \lambda^{-\frac{2 \nu+d}{2 \nu-\eta}} \frac{2 \eta-4 \nu}{(2 \nu+d)(2 \nu-2 \eta-d)} I_{j}=1 .
$$

Combining both of these cases and taking into account that $I_{j}=I / n, j=1, \ldots, n$, we get

$$
\lambda=\left(\frac{2 \delta^{2}|2 \nu-\eta| I}{(2 \pi)^{d} n(2 \nu+d)(2 \nu-2 \eta-d)}\right)^{\frac{2 \nu-\eta}{2 \nu+d}}
$$

It follows by (59) that

$$
\begin{aligned}
E_{\infty \infty}(\Lambda, \mathcal{D}) \geq \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}|\psi(\xi) F \widehat{x}(\xi)| d \xi=\frac{\delta}{(2 \pi)^{d}} \int_{|\psi(\xi)|} \geq \lambda s_{2}(\xi) & |\psi(\xi)| d \xi \\
& \quad+\frac{\delta}{\lambda(2 \pi)^{d}} \int_{|\psi(\xi)|<\lambda s_{2}(\xi)} \frac{|\psi(\xi)|^{2}}{s_{2}(\xi)} d \xi
\end{aligned}
$$

Using calculations similar to those that were above, we obtain

$$
E_{\infty \infty}(\Lambda, \mathcal{D}) \geq \frac{\delta|2 \nu-\eta| \lambda^{-\frac{\eta+d}{2 \nu-\eta}} I}{(2 \pi)^{d}(\eta+d)(2 \nu-2 \eta-d)}=E_{0}
$$

where

$$
E_{0}=\frac{(n|\nu+d / 2|)^{\frac{\eta+d}{2 \nu+d}}}{\eta+d}\left(\frac{(2 \nu-\eta) I}{(2 \pi)^{d}(2 \nu-2 \eta-d)}\right)^{\frac{2 \nu-\eta}{2 \nu+d}} \delta^{\frac{2 \nu-2 \eta-d}{2 \nu+d}}
$$

We prove that for all $x(\cdot) \in X_{\infty}$ the equality
(60) $\quad \Lambda x(t)=\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right) F x(\xi) e^{i\langle t, \xi\rangle} d \xi$

$$
+\frac{\lambda}{\delta(2 \pi)^{d}} \int_{\mathbb{R}^{d}} s_{2}(\xi) F x(\xi) \overline{F \widehat{x}(\xi)} e^{i\langle t, \xi\rangle} d \xi
$$

holds. Indeed,

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right) F x(\xi) e^{i\langle t, \xi\rangle} d \xi \\
&+\frac{\lambda}{\delta(2 \pi)^{d}} \int_{\mathbb{R}^{d}} s_{2}(\xi) F x(\xi) \overline{F \widehat{x}(\xi)} e^{i\langle t, \xi\rangle} d \xi \\
&=\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(\left(\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right) F x(\xi) e^{i\langle t, \xi\rangle} d \xi\right. \\
&+\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)} \lambda s(\xi) s_{2}(\xi) F x(\xi) e^{i\langle\langle, \xi\rangle} d \xi+\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)|<\lambda s_{2}(\xi)} \psi(\xi) F x(\xi) e^{i\langle t, \xi\rangle} d \xi \\
&=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \psi(\xi) F x(\xi) e^{i\langle t, \xi\rangle} d \xi=\Lambda x(t)
\end{aligned}
$$

We estimate the error of the method

$$
m(y)(t)=\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right) y(\xi) e^{i\langle t, \xi\rangle} d \xi
$$

We have

$$
\begin{aligned}
& |\Lambda x(t)-m(y)(t)| \leq \left\lvert\, \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \psi(\xi) F x(\xi) e^{i\langle t, \xi\rangle} d \xi\right. \\
& \left.-\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right) F x(\xi) e^{i\langle t, \xi\rangle} d \xi \right\rvert\, \\
& \quad+\frac{1}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left|\psi(\xi)-\lambda s(\xi) s_{2}(\xi)\right||F x(\xi)-y(\xi)| d \xi
\end{aligned}
$$

If $x(\cdot)$ such that

$$
\|F x(\cdot)-y(\cdot)\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq \delta, \quad \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|\varphi_{j}(\xi)\right|^{2}|F x(\xi)|^{2} d \xi \leq 1, j=1, \ldots, n
$$

then, taking into account (60), we obtain

$$
|\Lambda x(t)-m(y)(t)| \leq \frac{\lambda}{\delta(2 \pi)^{d}} \int_{\mathbb{R}^{d}} s_{2}(\xi)|F x(\xi)||F \widehat{x}(\xi)| d \xi+\mu \leq \frac{n \lambda}{\delta}+\mu
$$

where

$$
\mu=\frac{\delta}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}\left(|\psi(\xi)|-\lambda s_{2}(\xi)\right) d \xi
$$

Passing to the polar transformation we find

$$
\begin{aligned}
& \frac{\delta}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)}|\psi(\xi)| d \xi=\frac{\delta \lambda^{-\frac{\eta+d}{2 \nu-\eta}}}{(2 \pi)^{d}|\eta+d|} I \\
& \frac{\delta \lambda}{(2 \pi)^{d}} \int_{|\psi(\xi)| \geq \lambda s_{2}(\xi)} s_{2}(\xi) d \xi=\frac{\delta \lambda^{-\frac{\eta+d}{2 \nu-\eta}}}{(2 \pi)^{d}|2 \nu+d|} I
\end{aligned}
$$

Hence

$$
\mu=\frac{\delta \lambda^{-\frac{\eta+d}{2 \nu-\eta}}|2 \nu-\eta|}{(2 \pi)^{d}(\eta+d)(2 \nu+d)} I .
$$

It is easily checked that $n \lambda / \delta+\mu=E_{0}$, and therefore

$$
e_{\infty \infty}(\Lambda, \mathcal{D}, m) \leq E_{0} \leq E_{\infty \infty}(\Lambda, \mathcal{D})
$$

It follows that $m(y)(\cdot)$ is an optimal method, and the error of optimal recovery is E_{0}. It is easily checked that for $p=\infty$

$$
\frac{1}{(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}} \widetilde{C}_{\infty}(\nu, \eta) I^{1 / q_{1}} \delta^{\gamma_{1}}=E_{0}
$$

We evaluate ξ_{1} for $p=\infty$. We have

$$
\begin{equation*}
\xi_{1}=\delta\left(\frac{\left(1-\gamma_{1}\right) \widetilde{C}_{\infty}(\nu, \eta) I^{1 / q_{1}}}{n(2 \pi)^{d\left(1+\gamma_{1}\right) / 2}}\right)^{q_{1} / 2}=\lambda^{\frac{\nu+d / 2}{2 \nu-\eta}} \tag{61}
\end{equation*}
$$

The method $m(y)(\cdot)$ can be written as

$$
m(y)(t)=F^{-1}\left(\left(1-\lambda \frac{\left.s_{2}(\xi)\right)}{|\psi(t)|}\right)_{+} \psi(t) y(t)\right)
$$

In view of (61) we have

$$
m(y)(t)=F^{-1}\left(k\left(\xi_{1}^{\frac{1}{n+d / 2}} t\right) \psi(t) y(t)\right)=\widehat{m}(y)(t)
$$

Inequality (58) is proved by the analogy with the proof of Corollary 1.
It is not difficult to formulate a corollary from Theorem 8 analogous to Corollary 7 for the same Λ and $\mathcal{D}=\left(D^{\nu e_{1}}, \ldots, D^{\nu e_{d}}\right)$.

References

[1] F.I. Andrianov, Multidimensional analogues of Carlson's inequality and its generalizations, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (56) (1960) 3-7 (in Russian).
[2] S. Barza, V. Burenkov, J. Pečarić, L.-E. Persson, Sharp multidimentional multiplicative inequalities for weighted L_{p} spaces with homogeneous weights, Math. Ineq. Appl. 1 (1998) 53-67.
[3] F. Carlson, Une inégalité, Ark. Mat. Astr. Fysik 25B (1934) 1-5.
[4] V.I. Levin, Sharp constants in inequalities of Carlson type, Dokl. Akad. Nauk. SSSR 59 (1948) 635-638 (in Russian).
[5] C. A. Micchelli, T. J. Rivlin, A survey of optimal recovery, in Optimal Estimation in Approximation Theory, C. A. Micchelli and T. J. Rivlin, eds., Plenum Press, New York, 1977, pp. 1-54.
[6] K. Yu. Osipenko, Optimal Recovery of Analytic Functions, Nova Science Publ., Huntington, New York, 2000.
[7] K.Yu. Osipenko, Optimal recovery of linear operators in non-Euclidean metrics, Sb. Math. 205 (10) (2014) 1442-1472.
[8] K.Yu. Osipenko, Optimal recovery of operators and multidimensional Carlson type inequalities, J. Complexity 32 (1) (2016) 53-73.
[9] K. Yu. Osipenko, Inequalities for derivatives with the Fourier transform, Appl. Comp. Harm. Anal., 53 (2021) 132-150.
[10] K. Yu. Osipenko, Optimal recovery in weighted spaces with homogeneous weights, Sbornic: Mathematics, 213 (2022) 385-411.
[11] K. Yu. Osipenko, Introduction to Optimal Recovery Theory, Lan Publishing House, St. Petersburg, 2022 (in Russian).
[12] L. Plaskota, Noisy Information and Computational Complexity, Cambridge University Press, Cambridge, 1996.
[13] J. F. Traub, H. Woźniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980.

Moscow State University, Moscow and Institute for Information Transmission Problems, RusSian Academy of Sciences, Moscow

E-mail address: kosipenko@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 41A65, 41A46, 49N30.
 Key words and phrases. Optimal recovery, Carlson type inequalities, Fourier transform, sharp constants.

