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We devote this paper to Henryk Woźniakowski who had intensively studied optimal

recovery problems

Abstract. We consider the problem of optimal recovery of solu-
tions of the generalized heat equation in the unit ball. Information
is given at two time instances, but inaccurate. The solution is to
be constructed at some intermediate time. We provide the optimal
error and present an algorithm which achieves this error level.

The application of optimal recovery theory to problems of partial
differential equations was started by J. F. Traub and H. Woźniakowski
in [1]. In particular, this monograph considered optimal recovery of
solutions of the heat equation from finitely many Fourier coefficients of
the initial function. Several recovery problems for partial differential
equation from noisy information were recently studied in [2]–[7]. The
results considered in these papers were based on a general method
for optimal recovery of linear operators developed in [8] and [9] (see
also [10]). This method extended previous research from [11]. Various
problems of optimal recovery from noisy information may be found
in [12] (see also [13] where the complexity of differential and integral
equations is discussed).

Here we consider the optimal recovery problem for solutions of the
generalized heat equation in the unit d-ball at the time τ from inaccu-
rate solutions at the times t1 and t2.

Set

B
d =

{
x = (x1, . . . , xd) : |x|2 =

d∑

j=1

x2
j < 1

}
,

S
d−1 = { x ∈ R

d : |x| = 1 }.
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Consider the problem of finding the solution of the generalized heat
equation in L2(B

d):

(1)

ut + (−∆)α/2u = 0, α > 0,

u|t=0 = f(x),

u|x∈Sd−1 = 0.

Let 0 ≤ t1 < t2. Suppose we know approximate solutions y1 and
y2 of (1) at times t1 and t2, given with errors δ1 and δ2 in the L2(B

d)
norm. We want to recover in the best way the solution of (1) at the
time τ , t1 < τ < t2. We assume that y1, y2 ∈ L2(B

d) satisfy

‖u(·, tj) − yj(·)‖L2(Bd) ≤ δj , j = 1, 2.

Any map ξ : L2(B
d) × L2(B

d) → L2(B
d) is admitted as a recovery

method. The quantity

eτ (α, L2(B
d), δ1, δ2, ξ)

= sup
f,y1,y2∈L2(Bd)

‖u(·,tj)−yj(·)‖L2(Bd)
≤δj , j=1,2

‖u(·, τ) − ξ(y1, y2)(·)‖L2(Bd),

where u is the solution of (1), is called the error of the method ξ. The
quantity

Eτ (α, L2(B
d), δ1, δ2) = inf

ξ : L2(Bd)×L2(Bd)→L2(Bd)
eτ (α, L2(B

d), δ1, δ2, ξ)

is called the error of optimal recovery and a method delivering the lower
bound is called an optimal recovery method.

Note that the initial functions f belong to the whole space L2(B
d).

In other words, the a priori information about initial functions is not a
compact set. Therefore we use the information with infinite cardinality
([1] dealt with algorithms using information having finite cardinality).
For example, it can be shown that knowing (even precisely) any finite
number of Fourier coefficients of u(·, tj), j = 1, 2, does not lead to the
finite error of optimal recovery.

The analysis of the problem is different for d = 1 and d > 1, because
of different type of orthogonal eigensystems.

We begin with the case d > 1. Let Hk denote the set of spherical
harmonics of order k. It is known (see [14]) that dim H0 = a0 = 1,

dim Hk = ak = (d + 2k − 2)
(d + k − 3)!

(d − 2)!k!
, k = 1, 2, . . . ,

and

L2(S
d−1) =

∞∑

k=0

Hk.
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Let {Y
(k)
j }ak

j=1 denote an orthonormal basis in Hk. Let Jp be the

Bessel function of the first kind of order p and µ
(p)
s , s = 1, 2, . . . , be the

zeros of Jp.
The functions

Zskj(x) =
Jp(µ

(p)
s r)

rd/2−1
Y

(k)
j (x′),

where r = |x|, x′ = x/r, and p = k + (d − 2)/2, form an orthogonal
basis in L2(B

d). Moreover,

∆Zskj = −(µ(p)
s )2Zskj.

We will use the orthonormal basis in L2(B
d)

Yskj =
Zskj

‖Zskj‖L2(Bd)

.

We recall that the operator (−∆)α/2 is defined as follows

(−∆)α/2f =
∞∑

s=1

∞∑

k=0

(µ(p)
s )α

ak∑

j=1

cskjYskj,

where

(2) f =
∞∑

s=1

∞∑

k=0

ak∑

j=1

cskjYskj.

The solution of (1) can be easily found by the Fourier method of
separation of variables. It has the form

u(x, t) =

∞∑

s=1

∞∑

k=0

e−(µ
(p)
s )αt

ak∑

j=1

cskjYskj(x),

where cskj are the Fourier coefficients of the initial function.
Set

ask = e−2(µ
(p)
s )

α

(we recall that p = k + (d − 2)/2 and α is from (1)). It is known
(see [15]) that for all s ∈ N

µ(p)
s < µ(p+1)

s < µ
(p)
s+1

and µ
(p)
s → ∞ as s → ∞. So the set of zeros of the Bessel functions

µ
(p)
s , s = 1, 2, . . ., p = k + (d − 2)/2, k = 0, 1, . . . , can be arranged in

ascending order

µ(p1)
s1

< µ(p2)
s2

< . . . < µ(pn)
sn

< . . . .

Consequently,
as1k1 > as2k2 > . . . > asnkn

> . . . .

For the case d = 1 the functions

Ys(x) = sin
πs

2
(x + 1), s = 1, 2, . . . ,
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form an orthonormal basis in L2(B
1) = L2([−1, 1]) and

∆Ys = −
(πs

2

)2

Ys.

We define the operator (−∆)α/2 as follows

(−∆)α/2f =
∞∑

s=1

(πs

2

)α

csYs,

where cs are the Fourier coefficients of f . It is easily verified that for
d = 1 the solution of (1) is given by

u(x, t) =

∞∑

s=1

e−(πs
2 )

α
tcsYs(x),

where cs are the Fourier coefficients of the initial function.
For an arbitrary decreasing sequence β1 > β2 > . . . > 0 we introduce

the following notation

∆m =
[
βt2−t1

m+1 , βt2−t1
m

]
, ∆0 =

[
βt2−t1

1 , +∞
)
,

λ̂1 =






βτ−t2
m+1 − βm

τ−t2

βt1−t2
m+1 − βt1−t2

m

,
δ2
2

δ2
1

∈ ∆m, m ≥ 1,

βτ−t1
1 ,

δ2
2

δ2
1

∈ ∆0,

λ̂2 =






βτ−t1
m − βτ−t1

m+1

βt2−t1
m − βt2−t1

m+1

δ2
2

δ2
1

∈ ∆m, m ≥ 1,

0,
δ2
2

δ2
1

∈ ∆0.

Theorem 1. Set

βm =






asm,km
, d > 1,

e−2(πm
2 )

α

, d = 1.

Then for all δ1, δ2 > 0 the following equality

Eτ (α, L2(B
d), δ1, δ2) =

√
λ̂1δ2

1 + λ̂2δ2
2

holds. Moreover, the method

(3)

ξ̂(y1, y2)(x) =






∞∑

s=1

∞∑

k=0

a
τ/2
sk

ak∑

j=1

λ̂1a
t1/2
sk y1skj + λ̂2a

t2/2
sk y2skj

λ̂1a
t1
sk + λ̂2a

t2
sk

Yskj(x),

d > 1,
∞∑

s=1

e−(πs
2 )

α
τ λ̂1e

−(πs
2 )

α
t1y1s + λ̂2e

−(πs
2 )

α
t2y2s

λ̂1e
−2( πs

2 )
α
t1 + λ̂2e

−2(πs
2 )

α
t2

Ys(x),

d = 1,
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where y1skj, y2skj and y1s, y2s are the Fourier coefficients of y1(·) and

y2(·), is optimal.

To prove Theorem 1 we use a general scheme of construction of
optimal recovery methods for linear operators developed in [8] and [9]
(see also [10]).

Consider the following extremal problem

(4) ‖u(·, τ)‖2
L2(Bd) → max, ‖u(·, tj)‖

2
L2(Bd) ≤ δ2

j , j = 1, 2,

f ∈ L2(B
d),

where u is the solution of problem (1). Set

L(f, λ1, λ2) = −‖u(·, τ)‖2
L2(Bd) + λ1‖u(·, t1)‖

2
L2(Bd) + λ2‖u(·, t2)‖

2
L2(Bd).

From [9] (see also [10]) follows

Theorem 2. Suppose that there exist λ̂1 ≥ 0, λ̂2 ≥ 0 and an admissible

function f̂ in (4) such that

(a) min
f∈L2(Bd)

L(f, λ̂1, λ̂2) = L(f̂ , λ̂1, λ̂2),

(b) λ̂1(‖û(·, t1)‖
2
L2(Bd) − δ2

1) + λ̂2(‖û(·, t2)‖
2
L2(Bd) − δ2

2) = 0,

where û is the solution of (1) with the initial function f̂ . If for all

y1, y2 ∈ L2(B
d) there exists a solution f0 of the problem

λ̂1‖u(·, t1) − y1(·)‖
2
L2(Bd) + λ̂2‖u(·, t2) − y2(·)‖

2
L2(Bd) → min,

f ∈ L2(B
d),

where u is the solution of (1), then the method

ξ̂(y1, y2)(x) = u0(x, τ),

where u0 is the solution of (1) with the initial function f0, is optimal

and for the error of optimal recovery the following equality

E(α, L2(B
d), δ1, δ2) =

√
λ̂1δ2

1 + λ̂2δ2
2

holds.

Proof of Theorem 1. Consider the case d > 1. We have

L(f, λ̂1, λ̂2) =

∞∑

s=1

∞∑

k=0

(−aτ
sk + λ̂1a

t1
sk + λ̂2a

t2
sk)

ak∑

j=1

c2
skj,

where cskj are the Fourier coefficients of f . Putting

bsk =

ak∑

j=1

c2
skj,
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we rewrite L(f, λ̂1, λ̂2) in the form

L(f, λ̂1, λ̂2) =
∞∑

s=1

∞∑

k=0

aτ
sk(−1 + λ̂1a

t1−τ
sk + λ̂2a

t2−τ
sk )bsk.

Assume that δ2
2/δ

2
1 ∈ ∆m, m ≥ 1. It is easily seen that in this case for

λ̂1 and λ̂2, equalities

(5)
λ̂1β

t1
m + λ̂2β

t2
m = βτ

m,

λ̂1β
t1
m+1 + λ̂2β

t2
m+1 = βτ

m+1

hold. Consider the function g(z) = −1 + λ̂1e
−2z(t1−τ) + λ̂2e

−2z(t2−τ). It
is easy to verify that g is a convex function. It follows from (5) that
g has two zeros zm = (µsm

(pm))
α

and zm+1 = (µsm+1
(pm+1))

α
. In view

of the convexity of g for all z ≤ zm and all z ≥ zm+1 the inequality
g(z) ≥ 0 holds. Thus for all f ∈ L2(B

d) we have

L(f, λ̂1, λ̂2) ≥ 0.

Define b̂sm,km
and b̂sm+1,km+1 from the conditions

b̂sm,km
βtj

m + b̂sm+1,km+1β
tj
m+1 = δ2

j , j = 1, 2.

It is easy to verify that

b̂sm,km
=

δ2
1

βt1
m

·
δ2
2/δ

2
1 − βt2−t1

m+1

βt2−t1
m − βt2−t1

m+1

,

b̂sm+1,km+1 =
δ2
1

βt1
m+1

·
βt2−t1

m − δ2
2/δ

2
1

βt2−t1
m − βt2−t1

m+1

.

For j 6= m, m + 1 we set bsj ,kj
= 0. Then the function

f̂(x) =

m+1∑

j=m

√
bsjkj

Ysjkj1(x)

will be admissible and
L(f̂ , λ̂1, λ̂2) = 0.

Thus conditions (a) and (b) of Theorem 2 hold.
Now we assume that δ2

2/δ
2
1 ∈ ∆0. It means that δ2

2 ≥ δ2
1β

t2−t1
1 .

Putting

f̂(x) = δ1β
−t1/2
1 Ys1k11(x),

for the solution û of (1) with the initial function f̂ we have

‖û(·, t1)‖
2
L2(Bd) = δ2

1 ,

‖û(·, t2)‖
2
L2(Bd) = δ2

1β
t2−t1
1 ≤ δ2

2 .

Consequently, condition (b) of Theorem 2 holds. Condition (a) of the
same theorem holds since for all functions f ∈ L2(B

d)

L(f, λ̂1, λ̂2) ≥ 0,
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and moreover

L(f̂ , λ̂1, λ̂2) = 0.

Now let us construct an optimal recovery method. According to
Theorem 2 we have to solve the problem

λ̂1

∞∑

s=1

∞∑

k=0

ak∑

j=1

(a
t1/2
sk cskj − y1skj)

2

+ λ̂2

∞∑

s=1

∞∑

k=0

ak∑

j=1

(
a

t2/2
sk cskj − y2skj

)2

→ min, f ∈ L2(B
d),

where cskj are the Fourier coefficients of f (see (2)). It can be easily
verified that the solution of this problem has the form

ĉskj =
λ̂1a

t1/2
sk y1skj + λ̂2a

t2/2
sk y2skj

λ̂1a
t1
sk + λ̂2a

t2
sk

.

The optimality of method (3) now follows from Theorem 2.
The case d = 1 may be considered in a similar way. �

We give the table (see [15]) of the first ten ordered numbers µ
(p)
s

for even d (that is, for p ∈ Z+) and for odd d (when p = k + 1/2,
k = 0, 1, . . .).
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j sj pj µ
(pj)
sj sj pj µ

(pj)
sj

1 1 0 2.4048 1
1

2
3.1416

2 1 1 3.8317 1
3

2
4.4934

3 1 2 5.1356 1
5

2
5.7635

4 2 0 5.5200 2
1

2
6.2832

5 1 3 6.3802 1
7

2
6.9879

6 2 1 7.0156 2
3

2
7.7253

7 1 4 7.5883 1
9

2
8.1826

8 2 2 8.4172 2
5

2
9.0950

9 3 0 8.6537 1
11

2
9.3558

10 1 5 8.7715 3
1

2
9.4248

The authors are grateful to referees for their remarks and suggestions
which greatly help us to improve the paper.
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tions from Hardy–Sobolev spaces”, Mat. Sb. 197 (2006), 15–34; English transl.
in Sbornic: Mathematics 197 (2006), 315–334.

[11] A. A. Melkman and C. A. Micchelli, “Optimal estimation of linear operators
in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16 (1979),
87–105.

[12] L. Plaskota, Noisy Information and Computational complexity, Cambridge
University Press, 1996.

[13] A. G. Werschulz, The Computational Complexity of Differential and Integral

Equations: An Information-Based Approach, Oxford University Press, New
York, 1991.

[14] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, NJ 1971.

[15] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1972.

“MATI” — Russian State Technological University

E-mail address : konst@yahoo.com

“MATI” — Russian State Technological University

E-mail address : wed@rstu.ru


