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not help for recovery of linear operators. For recovery of linear
functionals we give necessary and sufficient conditions for the
existence of an optimal nonadaptive linearmethodwhich gives the
same error as optimal adaptive methods.
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1. Introduction

Let X be a linear space, Z be a normed linear space, T : X → Z be a linear operator and W ⊂ X .
We consider the problem of recovery of T on the set W ⊂ X by noisy information about elements
from W . Suppose that there is a family I of linear information operators Ip: X → Y , p ∈ Ω , where
Ω is some set and Y is a normed linear space. All linear spaces are considered over the field of real
or complex numbers. Let us choose n parameters p1, . . . , pn ∈ Ω and assume that for all x ∈ W we
know y1, . . . , yn ∈ Y such that

∥Ipjx − yj∥Y ≤ δ, δ ≥ 0.

As recovery methods we consider all possible mappings ϕ: Y n
→ Z . The error of a method ϕ is

defined as follows

en(T ,W , I, δ, p, ϕ) = sup
x∈W , y=(y1,...,yn)∈Yn
∥Ipj x−yj∥Y ≤δ, j=1,...,n

∥Tx − ϕ(y)∥Z ;
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here p = (p1, . . . , pn). The quantity

En(T ,W , I, δ) = inf
p1,...,pn∈Ω

inf
ϕ:Yn→Z

en(T ,W , I, δ, p, ϕ)

is called the nth optimal nonadaptive recovery error. Parameters p̂1, . . . , p̂n and the method ϕ̂ we call
optimal if

en(T ,W , I, δ, p̂, ϕ̂) = En(T ,W , I, δ), p̂ = (̂p1, . . . , p̂n).

One of the typical examples of this setting is the problem of optimal integration. Let W be a class
of functions defined on the segment [a, b]. Set

Tx =

∫ b

a
x(t) dt, Itjx = x(tj), tj ∈ [a, b], j = 1, . . . , n.

Then the problem stated above becomes the problem of choosing optimal method of integration and
optimal nodes of integration at which the function should be measured.

In practice, quite often a different approach is used, in which subsequent nodes of integration are
defined on the base of information about function values at the previous nodes. Such algorithms are
called adaptive (or sequential). In this regard, it makes sense to consider a slightly different (more
general) setting of the optimal recovery problem.

Let ω1 ∈ Ω and functions

ωj: Y j−1
→ Ω, j = 2, . . . , n,

be given. In case of adaptive information, we assume that for x ∈ W we know y = (y1, . . . , yn) such
that

∥Ipjx − yj∥Y ≤ δ, j = 1, . . . , n,

where p1 = ω1 and

pj = ωj(y1, . . . , yj−1), j = 2, . . . , n. (1)

As recovery methods we consider all possible mappings

ϕ: Y n
→ Z .

For x ∈ W we set

Λ(x) = { (y1, . . . , yn) : ∥Ipjx − yj∥Y ≤ δ, j = 1, . . . , n },

where p1 = ω1 and pj, j = 2, . . . , n, are defined by (1), that is,Λ(x) is the set of all possible information
y about x.

The error of a method ϕ is defined as follows

ean(T ,W , I, δ, ω, ϕ) = sup
x∈W

y=(y1,...,yn)∈Λ(x)

∥Tx − ϕ(y)∥Z ;

here ω = (ω1, . . . , ωn). The value

Ea
n(T ,W , I, δ) = inf

ω,ϕ
en(T ,W , I, δ, ω, ϕ)

is called the error of optimal adaptive recovery.
Adaptivemethods have amuch richer structure and it is natural to expect that the error of adaptive

recoverywill be smaller than for nonadaptive recovery. This iswhat happens in a number of problems,
such as calculating the root of a function or finding the maximum for an unimodal function (note that
in these examples, the operator to be recovered is not linear). However, it turns out that there are cases
when adaptive recovery does not give a win. In such cases, instead of complicated adaptive methods,
it makes sense to use simpler nonadaptive methods.

The question of whether adaption helps to reduce the error of recovery has been studied in various
papers. In [1] it was proved that adaptive methods do not help when T is a linear functional and W
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is a convex and centrally-symmetric set. It was shown in [2] and [15] (see also [13]) that adaption
helps at most twice for recovery of linear operators T over convex and symmetric setsW (we extend
this result for the generalized adaption in Theorem 2). In [1,2], and [15] only noiseless situation was
considered. An example of such problem (with exact information) where adaption can helpwas given
in [3,4]. It was shown in [5,9,10] that for convex but not symmetric sets adaptive information can be
significantly better than nonadaptive information.

The results on adaption versus nonadaption in the average case setting may be found in [16]
and [12] (see also [14] and [13]).

In the present paperwe give a generalized setting of adaptive recovery from noisy information and
extend some known results for this setting. Our main results are sufficient conditions under which
adaption does not help for recovery of linear operators (Theorem 3), an application of this result to
recovery of derivatives by noisy information about the Fourier coefficients (Theorem 4), and criterion
for the existence of an optimal nonadaptive linear method which gives the same error as optimal
adaptive methods for recovery of linear functionals (Theorem 5).

2. Generalized setting of adaptive recovery

In adaptive recovery, we can define mappings

Φ(y) = (ω1, ω2(y1), . . . , ωn(y1, . . . , yn−1)) (2)

which for every y = (y1, . . . , yn) give the values of parameters p = (p1, . . . , pn) by the formula
p = Φ(y). We now generalize the adaptive setting by allowing arbitrary mappings Φ(y).

Wewill consider the following problemof optimal adaptive recovery. LetX , Z , T , andW be as above
and Y be a linear space. Assume that there is a set of parameters P and for every p ∈ P a multivalued
mapping

Fp:W → Y

is assigned (that is, for every x ∈ W Fp(x) is a set from Y). Themapping Fp represents the nonadaptive
information corresponding to the indices p ∈ P . Denote by F the set of all mappings Fp.

Suppose also that there is a mapping

Φ:Y → P.

As recovery methods of T we consider all possible mappings ϕ:Y → Z .
The error of a method ϕ is defined as follows

ea(T ,F, Φ, ϕ) = sup
x∈W

y∈FΦ(y)(x)

∥Tx − ϕ(y)∥Z ,

and the value

Ea(T ,F) = inf
Φ:Y→P

inf
ϕ:Y→Z

ea(T ,F, Φ, ϕ)

is called the error of optimal adaptive recovery.
In this setting we do not see the sequential procedure in the explicit form. Nevertheless sequential

procedures are included in the set of all mappings Φ (it suffices to take Φ in the form (2)).
By the nonadaptive problem of recovery for the considered case we mean the problem of finding

the value

E(T ,F) = inf
p∈P

inf
ϕ:Y→Z

e(T ,F, p, ϕ), (3)

where

e(T ,F, p, ϕ) = sup
x∈W

y∈Fp(x)

∥Tx − ϕ(y)∥Z ,

and also the problem of finding parameters and methods for which the lower bound is attained.



K.Yu. Osipenko / Journal of Complexity 53 (2019) 162–172 165

If Φ(y) = p for all y ∈ Y , then

ea(T ,F, Φ, ϕ) = e(T ,F, p, ϕ).

Therefore,

Ea(T ,F) ≤ E(T ,F). (4)

3. Some relations between adaptive and nonadaptive recovery errors

Set

gr Fp := { (x, y) : x ∈ W , y ∈ Fp(x) }

and

F−1
p (y) = { x ∈ W : (x, y) ∈ gr Fp }.

Put

D(p) = sup
x∈F−1

p (0)

∥Tx∥Z .

Theorem 1. Assume that for all p ∈ P the sets gr Fp are centrally-symmetric and contain 0. Then

Ea(T ,F) ≥ inf
p∈P

D(p).

Proof. It follows from the definition of Ea(T ,F) that for any ε > 0 there exist Φ̂ and ϕ̂ such that

ea(T ,F, Φ̂, ϕ̂) ≤ Ea(T ,F) + ε.

Consider the value D(Φ̂(0)). For any η > 0 there exists a x̂ ∈ F−1
Φ̂(0)(0) such that

∥T x̂∥Z ≥ D(Φ̂(0)) − η.

Since the set gr FΦ̂(0) is centrally-symmetric −̂x ∈ F−1
Φ̂(0)(0). We have

2(D(Φ̂(0)) − η) ≤ 2∥T x̂∥Z = ∥T x̂ − ϕ̂(0) − (T (−̂x) − ϕ̂(0))∥Z

≤ ∥T x̂ − ϕ̂(0)∥Z + ∥T (−̂x) − ϕ̂(0)∥Z ≤ 2ea(T ,F, Φ̂, ϕ̂)
≤ 2(Ea(T ,F) + ε).

This implies that

D(Φ̂(0)) ≤ Ea(T ,F).

Consequently,

inf
p∈P

D(p) ≤ Ea(T ,F). □

Put

e(T ,F, p) = inf
ϕ:Y→Z

e(T ,F, p, ϕ).

Lemma 1. Assume that for all p ∈ P the sets gr Fp are convex and centrally-symmetric. Then for all p ∈ P

e(T ,F, p) ≤ 2D(p).

Proof. Denote by PrY gr Fp the set of y ∈ Y for which F−1
p (y) ̸= ∅. If y ∈ PrY gr Fp and x1, x2 ∈ F−1

p (y)
then in view of convexity and centrally-symmetry of gr Fp h = (x1 − x2)/2 ∈ F−1

p (0). Set

ϕ0(y) =

{
Tx(y), y ∈ PrY gr Fp,
0, y /∈ PrY gr Fp,
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where x(y) is any element from F−1
p (y). Then for all y ∈ Y

sup
x∈F−1

p (y)
∥Tx − ϕ0(y)∥Z ≤ 2∥Th∥Z ≤ 2D(p),

where h = (x − x(y))/2 ∈ F−1
p (0). Thus,

e(T ,F, p, ϕ0) = sup
y∈PrY gr Fp

sup
x∈F−1

p (y)
∥Tx − ϕ0(y)∥Z ≤ 2D(p).

Consequently, for all p ∈ P

e(T ,F, p) ≤ e(T ,F, p, ϕ0) ≤ 2D(p). □

In view of (4) from Theorem 1 and Lemma 1 we have

Theorem 2. If the sets gr Fp are convex and centrally-symmetric for all p ∈ P , then

1
2
E(T ,F) ≤ Ea(T ,F) ≤ E(T ,F).

Theorem 3. Assume that for all p ∈ P the sets gr Fp are centrally-symmetric, contain 0, and the equality

e(T ,F, p) = D(p) (5)

holds. Then

Ea(T ,F) = E(T ,F). (6)

Proof. It follows from Theorem 1 that

E(T ,F) = inf
p∈P

D(p) ≤ Ea(T ,F).

Taking into account (4) we obtain (6). □

Thus, in the case when condition (5) holds optimal nonadaptive methods give the same error as
optimal adaptive methods. In other words, in this case adaption does not help.

Condition (5) is valid when T is a linear functional (see [6]). But in some cases this condition may
be also valid for linear operators. We give one of such examples.

Let T be the interval [−π, π] with identified endpoints. Denote by Wr
2(T) the Sobolev space of

2π-periodic functions with absolutely continuous the (r −1)st derivative such that the rth derivative
is in L2(T). Set

W r
2 (T) = { x(·) ∈ Wr

2(T) : ∥x(r)(·)∥L2(T) ≤ 1 }.

Consider the problem of optimal recovery of the mth derivative, 0 ≤ m < r , for functions from the
classW r

2 (T) by their inaccurate Fourier coefficients.
Let A ⊂ Z+ and B ⊂ N be finite sets (one of them may be empty). Assume that for every function

x(·) ∈ W r
2 (T) instead of exact values of the Fourier coefficients ak, k ∈ A, and bk, k ∈ B, we know their

approximate values {̂ak}k∈A and {̂bk}k∈B such that

|ak − âk| ≤ δ, k ∈ A, |bk − b̂k| ≤ δ, k ∈ B.

Denote by ls
∞

the space Rs with the norm ∥y∥∞ = max0≤j≤s−1 |yj|, where y = (y0, y1, . . . , ys−1). Let

A = { k0, k1, . . . , kN1 }, B = { l1, . . . , lN2 },

where k0 < · · · < kN1 , l1 < · · · < lN2 and card A + card B = N1 + 1 + N2 = s. Put

FA,Bx(·) = (ak0 , ak1 , . . . , akN1 , bl1 , . . . , blN2 ).

Then we may say that we know the vector y ∈ ls
∞

such that

∥FA,Bx(·) − y∥∞ ≤ δ.
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In this case the error of a method ϕ:Rs
→ L2(T) is defined as follows

e(Dm,W r
2 (T), FA,B, δ, ϕ) = sup

x(·)∈Wr
2 (T), y∈ls∞

∥FA,Bx(·)−y∥∞≤δ

∥x(m)(·) − ϕ(y)(·)∥L2(T),

where Dmx(·) = x(m)(·). The quantity

e(Dm,W r
2 (T), FA,B, δ) = inf

ϕ:ls∞→L2(T)
e(Dm,W r

2 (T), FA,B, δ, ϕ)

is called the error of optimal recovery, and any method ϕ̂ for which this infimum is attained is called
an optimal method of recovery.

We are interested in the problem of choosing the parameter p̂ = (̂A, B̂), card Â+card B̂ ≤ N , so that
the error of optimal recovery is minimal. In this problemwewould like to consider both non-adaptive
methods and adaptive ones. In terms of the general setting here X = Wr

2(T), W = W r
2 (T), Y = RN ,

T = Dm, Z = L2(T),

P = PN = { (A, B) ∈ Z+ × N : card A + card B ≤ N },

Fpx(·) = { y ∈ ls
∞

: ∥FA,Bx(·) − y∥∞ ≤ δ }, s = card A + card B.

In [7] it was proven that for all p = (A, B) ∈ PN

e(Dm,F, p) = e(Dm,W r
2 (T), FA,B, δ) = sup

x(·)∈Wr
2 (T)

∥FA,Bx(·)∥∞≤δ

∥x(m)(·)∥L2(T).

Thus, any adaptivemethod (for example, those that choose the number of each next Fourier coefficient
based on the values of the previously calculated coefficients) do not provide an advantage over the
optimal non-adaptive method.

By virtue of the above, Theorem 4 of [7] implies the following result.

Theorem 4. Set

χm =

{
1, m = 0,
0, m ∈ N,

ŝ = max
{
s ∈ Z+ : 2δ2

s∑
k=0

k2r < 1, s ≤ [(N − χm)/2]
}

([a] is the integer part of a). Then

Ea(Dm,F) = E(Dm,F)

=

√ 1
(̂s + 1)2(r−m) +

δ2

2
χm + 2δ2

ŝ∑
k=1

k2m
(
1 −

(
k

ŝ + 1

)2(r−m)
)

,

the parameter p̂ = (̂A, B̂), where for m = 0

Â = (0, 1, . . . , ŝ), B̂ = (1, . . . , ŝ),

and for m > 0

Â = (1, . . . , ŝ), B̂ = (1, . . . , ŝ).

The method

ϕ̂(y)(t) =
y0
2

χm

+

ŝ∑
k=1

(
1 −

(
k

ŝ + 1

)2(r−m)
)
km(yk cos(kt + πm/2) + yk+̂s sin(kt + πm/2))

is optimal.
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4. Criterion for existence of a linear method which is optimal for adaptive and nonadaptive
recovery

Define the mapping GΦ by its graph

grGΦ = { (x, y) ∈ W × Y : (x, y) ∈ gr FΦ(y) }.

Let y ∈ PrY grGΦ . The value

r(T ,F, Φ, y) = inf
z∈Z

sup
x∈G−1

Φ (y)
∥Tx − z∥Z

is called the Chebyshev radius of the set T (G−1
Φ (y)). It is the radius of the minimal ball containing the

given set. If there exists such z(y) ∈ Z that

r(T ,F, Φ, y) = sup
x∈G−1

Φ (y)
∥Tx − z(y)∥Z ,

then z(y) is called the Chebyshev center of the set T (G−1
Φ (y)).

The value

Ra(T ,F) = inf
Φ:Y→P

sup
y∈PrY grGΦ

r(T ,F, Φ, y)

we call the adaptive radius of information in the problem of optimal adaptive recovery.
The analogous value was considered for nonadaptive recovery in [8]. It is defined as follows

R(T ,F) = inf
p∈P

sup
y∈PrY gr Fp

inf
z∈Z

sup
x∈F−1

p (y)
∥Tx − z∥Z .

It follows from [8] (see also [6]) that

E(T ,F) = R(T ,F). (7)

Using the same scheme of proof we obtain the analogous result for adaptive recovery.

Lemma 2. The following equality

Ea(T ,F) = Ra(T ,F)

holds.

Proof. Let ϕ:Y → Z be an arbitrary method of recovery. Then for all y ∈ PrY grGΦ

r(T ,F, Φ, y) ≤ sup
x∈G−1

Φ (y)
∥Tx − ϕ(y)∥Z ≤ ea(T ,F, Φ, ϕ).

Taking the upper bound on the left-hand side over all y ∈ PrY grGΦ and then taking the lower bound
over all methods, we obtain

sup
y∈PrY grGΦ

r(T ,F, Φ, y) ≤ inf
ϕ:Y→Z

ea(T ,F, Φ, ϕ).

Hence

Ra(T ,F) ≤ Ea(T ,F). (8)

Let us prove the opposite inequality. Let ε > 0. For any y ∈ PrY grGΦ there exists a zε(y) ∈ Z such
that

sup
x∈G−1

Φ (y)
∥Tx − zε(y)∥Z ≤ r(T ,F, Φ, y) + ε.
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We define the method ϕε:Y → Z as follows

ϕε(y) =

{
zε(y), y ∈ PrY grGΦ ,

0, y /∈ PrY grGΦ .

Then

ea(T ,F, Φ, ϕε) = sup
(x,y)∈GΦ

∥Tx − ϕε(y)∥Z

= sup
y∈PrY grGΦ

sup
x∈G−1

Φ (y)
∥Tx − ϕε(y)∥Z ≤ sup

y∈PrY grGΦ

(r(T ,F, Φ, y) + ε).

Consequently,

Ea(T ,F) ≤ Ra(T ,F) + ε.

In view of arbitrariness of ε > 0 we obtain

Ea(T ,F) ≤ Ra(T ,F).

Together with (8) this proves the statement of lemma. □

Denote by bco A the convex balanced hull of A. It consists of all elements of the form

x = λ1x1 + · · · + λmxm, xj ∈ A, j = 1, . . . ,m,

m∑
j=1

|λj| ≤ 1.

We define the mapping bco Fp by its graph as follows

gr bco Fp = bco gr Fp.

Denote by Fbco the set of all mappings bco Fp.
The idea of obtaining the following result is taking from [6].

Theorem 5. Let x′ be a linear functional on X. For the existence of linear nonadaptive method with the
optimal parameter p̂ ∈ P which is optimal over all adaptive methods it is necessary and sufficient that

Ra(x′,F) = Ra(x′,Fbco) (9)

and

D(̂p) = inf
p∈P

D(p). (10)

Proof. Necessity. Let themethod ϕ̂(y) = ⟨y′, y⟩, where y′ is a linear functional on Y , and the parameter
p̂ ∈ P be such that

e(x′,F, p̂, ϕ̂) = Ea(x′,F).

Assume that (x, y) ∈ bco gr F̂p. Then

(x, y) =

m∑
j=1

λj(xj, yj),

where (xj, yj) ∈ gr F̂p, j = 1, . . . ,m, and
∑m

j=1 |λj| ≤ 1. Consequently,

|⟨x′, x⟩ − ⟨y′, y⟩| =

⏐⏐⏐⏐ m∑
j=1

λj(⟨x′, xj⟩ − ⟨y′, yj⟩)
⏐⏐⏐⏐

≤ max
1≤j≤m

|⟨x′, xj⟩ − ⟨y′, yj⟩| ≤ e(x′,F, p̂, ϕ̂).
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This implies that

e(x′, bcoF, p̂, ϕ̂) ≤ e(x′,F, p̂, ϕ̂).

Since

gr Fp ⊂ gr bco Fp, (11)

we have

e(x′, bcoF, p̂, ϕ̂) ≥ e(x′,F, p̂, ϕ̂).

Thus we obtain

e(x′, bcoF, p̂, ϕ̂) = e(x′,F, p̂, ϕ̂). (12)

Hence,

E(x′, bcoF) ≤ e(x′, bcoF, p̂, ϕ̂) = e(x′,F, p̂, ϕ̂) = Ea(x′,F).

In view of (4) we obtain

Ea(x′, bcoF) ≤ Ea(x′,F). (13)

It follows from (11) that Ea(x′, bcoF) ≥ Ea(x′,F). This with (13) implies that

Ea(x′, bcoF) = Ea(x′,F). (14)

By virtue of Lemma 2 we obtain (9).
Nowweprove (10). As itwas noted above for linear functionals for anyp ∈ P the following equality

e(x′, bcoF, p) = D(p) (15)

holds. Taking into account (12) and (14) we have

D(̂p) = e(x′, bcoF, p̂) ≤ e(x′, bcoF, p̂, ϕ̂) = e(x′,F, p̂, ϕ̂)
= Ea(x′,F) = Ea(x′, bcoF) ≤ E(x′, bcoF) = inf

p∈P
D(p).

Sufficiency. Assume that (9) and (10) hold. In view of the fact that the set bco gr Fp is convex and
balanced, it follows from [6] that for any p ∈ P there exists a ϕ̂p(y) = ⟨y′

p, y⟩ such that

e(x′, bcoF, p) = e(x′, bcoF, p, ϕ̂p).

Set ϕ̂ = ϕ̂p̂. Then from (15) and (10) we obtain

e(x′, bcoF, p̂, ϕ̂) = E(x′, bcoF).

Moreover, it follows from (15) and Theorem 3 that

E(x′, bcoF) = Ea(x′, bcoF).

Therefore, taking into account (12), we obtain

e(x′,F, p̂, ϕ̂) = e(x′, bcoF, p̂, ϕ̂) = Ea(x′, bcoF)
= Ra(x′, bcoF) = Ra(x′,F) = Ea(x′,F). □

The analog of Theorem 5 cannot be valid for linear operators since equality (5) does not imply the
existence of linear optimal method even for Hilbert spaces and exact information.We give one simple
example which is the modified one from [11]. Let X = R3 with the Euclidean norm. Put

W = { x ∈ R3
: |x1| + 2|x2| ≤ 1, |x3| ≤ 2/15 }.

It is easy to see thatW is a convex and centrally-symmetric set.We consider optimal recovery of linear
operator T :R3

→ R2 defined as follows

Tx = (x1, x2), x = (x1, x2, x3),
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by exact values of linear functional Fx = x1+x3 (herewewill notmark the dependence on parameters
since we have only one parameter). The norm in R2 is also Euclidean. We have

e(T , F ) ≥ D = sup
(x1,x2,x3)∈W

x1+x3=0

∥(x1, x2)∥ = sup
|x1|+2|x2|≤1, |x1|≤2/15

∥(x1, x2)∥ =
1
2
.

Consider the method

ϕ0(y) =

{
0, |y| ≤ 4/15,
(y, 0), |y| > 4/15.

If |x1 + x3| ≤ 4/15, then

|x1| = |x1 + x3 − x3| ≤ |x1 + x3| + |x3| ≤
2
5
.

Consequently,

sup
(x1,x2,x3)∈W
|x1+x3 |≤4/15

∥(x1, x2) − ϕ0(x1 + x3)∥ = sup
(x1,x2,x3)∈W

|x1 |≤2/5

∥(x1, x2)∥ =
1
2
.

If (x1, x2, x3) ∈ W and |x1 + x3| > 4/15, then |x1| ≥ |x1 + x3| − |x3| > 2/15. Consequently,
|x2| < 13/30. Therefore

sup
(x1,x2,x3)∈W
|x1+x3 |>4/15

∥(x1, x2) − ϕ0(x1 + x3)∥ ≤ sup
(x1,x2,x3)∈W
|x2 |<13/30

∥(−x3, x2)∥

<

√
4

225
+

169
900

<
1
2
.

Thus,

e(T , F ) = D =
1
2
.

Now we show that for any linear method the error of recovery is greater than 1/2. For any linear
method ϕ(y) = (c1y, c2y), c1, c2 ∈ R, we have

e(T , F , ϕ) = sup
(x1,x2,x3)∈W

√
(x1 − c1(x1 + x3))2 + (x2 − c2(x1 + x3))2.

If c1 ≤ 0, considering the point (1, 0, 0) ∈ W , we obtain

e(T , F , ϕ) ≥

√
(1 − c1)2 + c22 ≥ 1.

If c1 > 0, considering the point (0, 1/2, 2/15 sign c2) ∈ W , we obtain

e(T , F , ϕ) ≥

√
c21

4
15

+

(
1
2

+ |c2|
2
15

)2

>
1
2
.

Consequently,

e(T , F , ϕ) >
1
2

= e(T , F ).

In the last example we see that there is no linear optimal method of recovery but condition (5) is
satisfied. We give one more example to show that in general this condition is not fulfilled even for
Hilbert spaces and exact information.

Let X = R3 with the Euclidean norm Tx = x and Fx = x1, x = (x1, x2, x3). Consider the equilateral
triangle ∆ on the plane x1 = 1 with vertexes at the points A(1, 0, 1/

√
3), B(1, −1/2, −1/(2

√
3)),

C(1, 1/2, −1/(2
√
3)). Put W = bco∆ (in other words, W is the convex hull of ∆ and −∆). It may be
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easily shown that the intersection of W with the plane x1 = 0 is the equilateral hexagon with the
center at origin and with a side equal to 1/2. Thus,

D = sup
x∈W
Fx=0

∥Tx∥ = sup
x∈W
x1=0

∥x∥ =
1
2
.

On the other hand, in view of (7) (here we do not mark the dependence on parameters again since we
have only one parameter) we have

e(T , F ) ≥ inf
z∈R3

sup
x∈W
x1=1

∥x − z∥Z =
1

√
3

>
1
2
.

Consequently, e(T , F ) > D.
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