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ABSTRACT 

This paper addresses the optimal recovery of functions from Hilbert spaces of functions on the unit disc. The estimation, 
or recovery, is performed from inaccurate information given by integration along radial paths. For a holomorphic func-
tion expressed as a series, three distinct situations are considered: where the information error in  norm is bound by 2L

0   or for a finite number of terms the error in 2
Nl  norm is bound by 0   or lastly the error in the  coeffi-

cient is bound by 

thj

0j  . The results are applied to the Hardy-Sobolev and Bergman-Sobolev spaces. 

 
Keywords: Approximation; Optimal Recovery; Holomorphic 

1. Introduction 

Let W be a subset of a linear space X, let Z be a normed 
linear space, and T the linear operator  that 
we are trying to recover on W  from given 
information. This information is provided by a linear 
operator 

:T X Z
X

:I X Y  where Y is a normed linear space. 
For any x X  we know some y Y  that is near Ix . 
That is, we know y Y  such that 

Y
Ix y                  (1) 

for some 0  . The value y  is our inaccurate infor- 
mation. Now we try to approximate the value of Tx  
from y



 using an algorithm or method, . Define a 
method to be any mapping , and regard 

 as the approximation to Tx  from the infor- 
mation 

m
:m Y Z

m y
y Y . Our goal is to minimize the difference of  

Tx  and  in  m y Z , i.e. minimize   .
Z

Tx m y   

However, the size of   .
Z

Tx m y   varies since y   

can be chosen to be any y Y  satisfying (1). Further- 
more Ix  varies depending on the x W  chosen. So 
the error of any single method is defined as the worst 
case error 

   
,

, , , , .sup

Y

Zx W y Y
Ix y

e T W I m Tx m y



 
 

 



 

 

Now the optimal error is that of the method with the 
smallest error. Thus the error of optimal recovery is 
defined as 

   

 

: ,

:

, , supinf

, , , .inf

Y

Zm Y Z x W y Y
Ix y

m Y Z

E T W Y Tx m y

e T W Y m


  

 



 







           (2) 

For the problems addressed in this paper, let  
be linear spaces with semi-inner norms 

1, , nY Y

kY
  and 

:k kI X Y  linear operators,  1, , n I I I  . We want 
to recover  for Tx

 : ,1 ,0
j

k j jY
x W W x X I x j k k n          

(where if 0k   we let ), if we know the values 0W X

jy  satisfying 
j

j j jY
I x y    for . 1, ,j k n  

Define the extremal problem 
22 2max, , 1, , , .

j
j iZ Y

Tx I x j n x X    

n

 (3) 

This problem is dual to (2). 

2. Construction of Optimal Method and 
Error 

The following results of G. G. Magaril-Il’yaev and K. Yu. 
Osipenko [1] are applied to several problems of optimal 
recovery. 

Theorem 1: Assume that there exist ,  ˆ 0j 
1, ,j    such that the solution of the extremal 

problem 

22 2

1 1

ˆ ˆmax, ,
j

n n

j j j jZ Y
j j

Tx I x x X  
 

      (4) 
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is the same as in (3). Assume also that for each  

 1 1, , n ny y y Y    Y

n

 there exists 

 1, ,yx x y y   which is a solution to  

2

1

ˆ min .
j

n

j j j Y
j

I x y x X


  

n

 

Then for all , ,0 <k k

 
, 1, ,

, , , sup

j Y j

k Z
x X

I x j nj

E T W I Tx






 




 

and the method 

  1 1ˆ , , 0, ,0, , ,k n k nm y y Tx y y      

is optimal.  
Theorem 1 gives a constructive approach to finding an 

optimal method  from the information. It follows 
from results obtained in [1-7] (see also [8] where this 
theorem was proven for one particular case.) 

m̂

In order to apply Theorem 1 the values of extremal 
problems (4) and the dual problem (3) must agree. The 
following result, also due to G. G. Magaril-Il’yaev and K. 
Yu Osipenko [1], provides conditions under which the 
solution of problems (3) and (4) will agree. 

Typically, when one encounters extremal problems, 
one approach is to construct the Lagrange function . 
For an extremal problem of the form of (4), the corre- 
sponding Lagrange function is 



  22

1
1

, , , .
j

n

n jZ Y
j

jx Tx I x  


    

Furthermore, x̂ X  is called an extremal element if 
2 2ˆ

j
j jY

I x   for  and thus admissible in (4)  1, ,j   n

and  

2 2

2 2

, 1, , .

ˆ .sup

j jY j

Z Z
x X

I x j n

Tx Tx




 





 

Theorem 2: Let  and ˆ 0j  x̂ X  be such that 
2 2ˆ

j
j jY

I x   for 1  and j n 

1).    1 1
ˆ ˆ ˆ ˆˆmin , , , , , ,n n

x X
x x  


     

2). 
2 2

1
ˆ ˆ 0.

j

n

j j jj Y
I x 


   
   

Then x̂  is an extremal element and  

2 22 2

1 1

2 2 2

1
ˆ ˆ, 1, ,

ˆ .sup sup
n n

j j j j j jY j Y jj j

n

j jZ Z
x X x X j

I x j n I x

Tx Tx

   

 

 

  
   

  


 

If we wish to combine Theorems 1 and 2 to determine 
an optimal error and method then we must show the 

blems (3) and (4). Through Theorem 2 we have such a 
means available. 

posed problem is able to satisfy equating extremal pro- 

3. Main Results 

 functions defined on the unit disc Consider the class of
 : 1z z   given by 

  2

0 0

:j
j j j

j j

X X f z a z a 
 

 

 
     

 
   (5) 

for ja  , 0j   satisfying  

1liminf j 1j
j

               (6) 

and 

   1
1 0lim j

j
j




   .          (7) 

Therefore, any f X  
he sem

is holomorphic in the unit disc 
by (6). We define t i-norm in X  as 

1 2
2

0
j jX

j

f a
 



  
 
  

and 

 : 1
X

W f X f .             (8) 

Let  2:K X L  ,  π,π  , be a lin
gi

.

ear operator 
ven by 

   1 i

0
e dKf f r     r

That is, Kf  is the radial integral of . To see that f
 2f L  y (7) we have for all but fin ely many j ,  K , b it

 2
1

j

c

j
 


 for some 0c  . Thus if 

X
f    then  

 2L
Kf   . 

We assum to knowe   Kf   
 given

given with a level of 
accuracy. That is, for a  0  , we know a 

 2y L   such that 

 2
.

L
Kf y                (9) 

The problem of optimal recovery is to find an optimal 
recovery method of the function f  in the class W  
from the information y  satisfying ). The error of  
given method is measu d in the  2L   norm defined 
by 

(9  a
re

   
2

1 2
21 π i

0 π

1
e d d

2πL
f f r r 



   
    .r

Any method   2 2:m L L   

Let 
 is admitted as a re-  

covery method.   ,  j jj j  

bers such that  

 be sequences of  

non-negative real num
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, 0lim lim .j
j j j 

 

Define to be the con-  

ve efine 

j   

     0,0 ,j j
j

C co  





  

x hull. D  x  for  0,x   by  

   : , max .x y C  x y 

Lemma 1: The piecewise linear function   with 
points of break  ,s sx y  0,1,s   , with 0 1 ,x x   
for  1,s sx x x   given by   1 2x x    

1,
   is su  thatch

2 0   . 
Proof. Assume that 1s sy y 

1
1 

 0.  
s sx x

   ans that It me

1s sy  . Since jy    and j   as j   
chthere is a k   su k s that x  k sy and     

the interval een  ,
. Then

betw s sx y  ,k and k  ngs to  belo

C . Consequently,  1 1s sx y    an 1sd  1,sx y   is not  

oint of break of 


a p  . 
Assume that 2 0 

nd 
. Since  the interval  

be
  0,0 C

tween  0,0  a 1 1,s s x y  to C . Geo-  belongs 

metrically ine 0, the l ,0  to  1 1,s sx y   will lie above  

the line 1 2( ) =x x   . It at  means th  s sx y   
contradicting that  , s sx y  is a point of break of  . 

Note that as 0lim   then for any fixed j
j

j



 ,b b   the slopes between points  ,b b   and 

 ,j j   also tends to 0 as 

0.lim lim

j b

j b j j

j j jj b b

j j

 
   

  
 

 




 



 

3.1. Inaccuracy in  Norm 

an  convex hull of the  

origin and this collecti

 2L 
2  giConsider the points in ven by 

   2
1 , 1   d define thej

j
j j


 

on of points as M : 

    2
0,0 1     (10) 

Let 

, 1 .j
j

M co j j


 
 

 

    max : , ,x y x y M          (11) 

thus   is a piecewise linear function. Let  ,s sx y , 
0s    be the points of break of ,1,   with 

 10 x  . By (7) the assumpt n for Lem  
sa  2

1j

0 
tis  by

x
fied

io ma 1 is
 j j   and 1j j    . 

Suppose that 2Theorem 3: 1s sx x 
   with 

0sy  . Let 

1 1
1 2

1 1

1, .ˆ ˆs s sy y y x
   s s s

s s s s

y x

x x x x


 

 
 

    (12) 

 the error of optimal recovery is  Then

  2
1 2
ˆ ˆ, , ,E W K                 (13) 

and 

      
121

1 2
0

ˆ ˆˆ 1 1 1 j
j j

j

m y j j y z  
 





      (14) 

imal method of recovery. If  then  is an opt 0sy 

  1, ,E W K
1

y

x
   and  ˆ 0m y   i  optimals an  me- 

 Consider the dual extremal problem 
thod. 

Proof.

   2 2
max, 1,

L X L
f f Kf

2 2 2 2        (15) 

which can be written as 

 

21

1 ja
j0

2 2 2
2

0 0

max,

1
1,

1

j

j j j
j j

a a
j

 





 

 




 


 
 

where 



  0
j

jj
f z a




  z . Define the corresponding  

nction as  Lagrange fu

 
 

    
2

2

1 2 1 22
0

, ,
ja

f  


  1 1 .
1

j
j

j j
j

  


   


 

Let the line segment between successive points  

 ,s sx y  and  ,1 1s sx y  1 2s be given by   ˆ ˆx x    .  

That is   1,s ss  hus 1 2
ˆ ˆ,x x


. T    are .  given by (12)

Take any   , 1
2

1j j j   , by definition of the  

function 

then 

  we have 

     2 2
1 s jj j j       1 j  1 .

Thus for all 0,1,j    

 2

1 2
ˆ ˆ1 1jj j       

 1 2
ˆ ˆ, , 0f   and hence  for any 

eed to the co of a nction

f X . 

We proc nstruction fu  f̂  
admissable satisfies   in (15) that also 

 2

2 2
2

1 2
ˆ ˆˆ ˆ1 0.

X L
f Kf             

 Assume  0sy .  

As 0sy   if and only if  0s  and 0 0y   the
nd only if

n 
0  if asy  0s   or 0y 0 . Let ,k k   
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be th es that satisfy  

   2
, 1s s kx y  

e indic

1

and 

, 1

We let  for 

  ,k k   

    2

1 1, 1s s kx y k k       . 

0ja  ,j k k  , and choose ,k ka a   so 
that th e condey satisfy th itions  

2 2

k k k ka a   1  

   
2 2 2

2 2

1 1
.

1 1
k ka a

k k
 

 
  (16) 

From these conditions let  

   
   

1 2
2

1 ka k
 

 
2 2

1 22
1

1

1 1

1 1

1

k

k k

s
s

s s

k

k k

x
y

x x

 











  


     

 
  

 

 

   
   

1 222

2 2

1 22

1
1

1 1
1

1 1

1

k
k

k k

s
s

s s

k
a k

k k

x
y

x x

 

 










  
   

     

 
  

 

   (17) 

and 

              (18) 

Now if 

 ˆ .k k
k kf z a z a z 

   

2
1s sx x 
   with 0s   or 0s   and  

0 0y   the function f̂  is admissible in (15) and  

t is  ˆ ˆ ˆ, ,f   ˆ
1 2 0 , tha f  min es ˆ,imiz 1 2,f ̂    

and condition 1) rt rmore,
by construction, 

 of Theorem 2 is satisfied.  
ˆ

Fu he
f  satisfies condition 2) of   Theorem 2.

If 0sy  , that is 0s   and 0 0y  , define ka   as 
in (17). Then as 0  0x

1 22

k ka y 
1 2 1 20

1 1 1
1 0

1
.

x
y x

x x


 



 
  

 
 

So let and we have   ˆ k
kf z a z 
  

   2

2 2
2

2
1

1ˆ ˆf K
1

1, .
1X L

k

f
xk


 

   
 

 

Thus the function f̂  is admissable in (15 and 
satisfies 1) and 2) of T rem 2. It should be noted that 
in

) 
heo

 this case 1 2
ˆ ˆ,   are si ply m 1 1 1

ˆ y x   and 2̂ 0  . 
Now we proceed to the extremal problem 

 

 

2

2

ˆ ˆ

, .f W y L  
   (19) 

This problem may be rewritten as  

2
2 1L X

f  
2

min,Kf y 

2
1 2 2

2 2 1
0 0

1ˆ ˆ ˆ
1j j j

j j

y a y
j

  
 

  
    minj ja

  



  

which has solution 

  221
1 2

1 ˆ: 0, 0
ˆ 1

0 : otherwise

j

jj

j
y j

j


 

  






 

So for 

ˆ1a   

2
1s sx x 
  , 

n optimal met
s given by (13)

0sy   
hod and t

f sy 

by Theorems 1 and 2, 
(14) is a he error of optimal 
recovery i . I 0  then  

  1

1

, ,
y

E W K
x

   and  ˆ 0m y   is an optimal me-  

thod. 
It should be noted t or fixed 
  

hat f ˆ ˆ, 0   , that is for 1 2

a fixed , the terms 

 
0 

 
1

1
21

1 2
ˆ ˆ1 1j j j j       

will have the property, 0 1j   and lim 0j
j




  as 

  lim 1 0j
j

j


1
  . So oths a ate  

of 

m̂  smo pproxim

y  by the filter j . values of the coefficients 

3.2. Inaccuracy in 2
Nl  Norm 

Our next problem of o al recoveryptim  remains to recover 
f X X    from ina urate inforcc mation pertaining to 

ti
the radial integral of f. However, the inaccurate infor- 
ma on we are given are the values  

0 1 1, , , Ny y y       such that  
1 2N

2

0
j j

j

K f y 




    

where jK f  is the coefficient of the radial integral thj  
Kf , 

 
 2

i, e .j
j L

K f Kf    


Denote 

 0 1 1, , , .N
NK K K K    

We again consider the space of functions X X   
given by (5) and M  and   defined by (10)
re

 and (11) 
spectively but now add the condition 

0, .j j N                   (20) 

The problem of optimal recovery o W  n the class 
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given by (8) is to determine the optimal error 

 , ,NE W K                           (2 ) 3

   
   2

0 1 1
2

, , , N
N

L
y y y     


2

1
2

0

: ,

inf
N

N

j j
j

m L f W

K f y 




 

 






  (24) 

and an optimal method  obtaining this 
error. 

 largest index such that 

sup f m y 

 2ˆ : Nm L 

Define 0l   as the

      0

1

0 1 1maxl ll l 


    
1

,       (21) 

which by (7) exists, and  

l N

  00 min 0 : ls s
1

1
0

1

1 .s s

s s

y
l

y

x x

 



 
 

 
   (26) 

Theorem 4 Suppose 

  


2
1s sx x 
   with 0s s . If  

0sy   let 1
1

1

ˆ s s

s s

y y

x x 
  
  and 1 1

2
1

ˆ s s s s

x
  

 . 

Then the optimal error is 
s sx  

y x y x

  2
1 2
ˆ ˆ, ,NE W K               (22) 

and  

      
1 121

1 2
0

ˆ ˆˆ 1 1 1
N

j
j

j

m y j j y z  
 





      j

is an optimal method. If  then  

(23) 

0sy 

  1

1

, ,N y
E W K

x
   and  ˆ 0m y   is an optimal me- 

thod. 
If 

0

2
sx  

 
 and  then w

 and

 
0

0s


y  ith  

1̂ 
0

1

0 1l l


  
0 02 1

ˆ ˆ
s sy x    the error of op- 

timal recovery  (2 al method. For  is (22) and 3) is an optim

0s 0y  ,   1

1

,
y

E W K ,N

x
   0y   is an op-  and  

timal method. 
Proo  cases 

 m̂

f. For the 2
1s sx x 

0   with s s  we 
simply apply t
Fo

he same st  as in  3. ructure of proof  Theorem
r the case 

0

2
sx    th me wo

Our construction will depend on whether or not 

0
0sy  , that is whether or not 0 0s   with  

x

ere remains so rk. 

  
0 0
, 0,0s sy  . 

 we notice 
0sFirst y N ume not.. Ass  Then if 

 we a w  since for all 
0

0sy N 
j

 lso kno
0j

0
0sx 

N  we assumed   . Since 0 0x   we know 
0 . Then by definition of 0s 0s  we know for 

00 s s  , 

   1
1

0 1s s
l

y y
l 

   

0= 1s s   we have  

0
1s sx x



 

and substituting 

  0 0 0

0

0 0

0
1

l
sx 0

11
1

s s s

s s

y y y
l

x x



  


 

which contradicts the definition of  There re  0l . fo

 and if     0 0

2
, 1s s cx y c c

0sy N , 1    then  

c N . 
In either case, 

0
0sy   or , the du m 

is of the form 
 

0
0sy  al proble

 2

2
,

L             (24) maxf 

1 22 2

0

1, ,
N

jX
j

f .K f 




 

The corresponding Lagrange function is then  

f X  

 

 
 

    2

1 2 1 22
0

, , 1
1

j N
j j

j

f j
j

     



2

1
a

j


   


   

where N
j  is the characteristic function of  

 N . 
Case 1)

:j j 
: y

0s

If 0y  let c  correspond to the index s
0  

0s  atisfying  

    0 0

2
, 1 ,s s cx y c c 1 .    

To determine 1 2,ˆ ˆ  let 1 2y x  ˆ ˆ    be the line  

through the point  0 0
,s sx y  

 

that is parallel to the line 

from the origin to  0 01 , 1l l
0l

 2 . Tha t is, let  

  0 0

1

0 2̂
ˆ1 ,l sl y

01 1
ˆ

sx           (


  25) 

So for any point of break we have 1 2
ˆ ˆ

s sy x    and 
for any index 1j N  , we obtain 

   2 2

1̂1 1j jj j j  ˆ1 2.       

If  then 

1

   

j N

      

    
0

1

1 0

1

ˆ 1 1 1 1 1

1 1

0.

j l j

j j

j l j

j j

   

 





     

   



 

1̂  and 2̂  and any f XThus for the chosen  we  

have  1 2
ˆ ˆ, , 0f    . 

To construct f̂ X  a bl letdmissa e in (24), 0 ˆ ja   
for j c 0, l  an by the system  d define 

0
ˆ ˆ,c la a  

1
2ˆ,

N

j
X

f K f
2 2

0

ˆ 1
j






   

00 c N l  and since  this becomes 
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 0 0

2
22 2

2

ˆ
ˆ ˆ 1, .

1

c
c c l l

a
a a

c
    


 

So let  and  ˆ 1ca c 
 

0

1 222

0

1 1
ˆ c

l
l

c
a

 


  
 
 
 

.  

Then for  the function   
0

22 1c sc x    

  ˆ ˆ 0

0

ˆ lc
c lf z a s admisz a z  i sable in (24) with  

Therefore 

 1 2
ˆ ˆ ˆ, , 0f     

 ˆ ,f f  1 2 1 2
ˆ ˆ ˆ ˆ, min , ,f X     an 

n we have 

d by 

constructio
2ˆ 1
X

f   and 
21 2

0
ˆN

jj
K f 


  

so that 

12 2
2

1 1 j
X

f f    
  2

=0

ˆ ˆˆ ˆ 0
N

j

K 
    

 
  

ditions (a) and (b) of Theorem 2 are satisfied. 
Case 2)

and con
: 

If ,0 , and , as  
th ly poin

ate  

is a p f brea

0
0sy   

0  then 
0sy 

is is the on
   

0 0
, 0s sx y 

t in the set  
0s  0

     2
1 , 1j j     with a y -coordin0,0  j

j 

of . Furth  (0,0)   0 ermore, as oint o k of   
we know 0j   for all j . Since  then   

the definition of 

0 0s   by

0s  we know   0

1
1

0 1l l
1

y

x


  . As  

   1

ax j

y
j

     0

1

0

11

0

1m

1 1max

j

j l
j N

x

j l 





 
1





 

   
 

then we obtain equality, 

  (26)

  0

1
1

0
1

1l

y
l

x



  . 

Define 1 2
ˆ ˆ,   by (25) so 1

1
1

ˆ y

x
   and . If we 2̂ 0 

let f̂ X  be     0

0

1 2ˆ l
lf z z 


 then 

 

2 2

 

1
2

1 2
0

2
1

ˆ

1 1 0 0

N

j
X j

f K fˆ ˆˆ1

ˆ 0.

  



 
  

 





       

   


 

In addition f̂  is admissable in extremal problem (24)  

as 
2ˆ 1
X

f   and 
21 2

0
ˆ 0

N

jj
K f 


  . 

To justify simply note that as   ˆ ˆ, , 0f     1 2

, 1 1x y  satisfies (26) and 0j   for all 0j   then  

 1 1 0
y

1

1j j
x
 . So we have    

   1 2 0
ˆ, 1 1

1

j

j j x
 



 
2

1

1

ˆ, 0j

a y
f j       

 ince   . S

 1 2
ˆ ˆ, , 0f     then f̂  minimizes

For both cases, we now consider extremal problem 

  . 

1 22

1 2
0j

ˆ ˆ min, .
N

j jX
f K f y f X 



      


This problem can be written as  
2

12

1 2
0 0

ˆ ˆ min,
1

N
j

j j j
j j

a
a y

j
  

 

 

  
    

which will have solution  

  221
1 2

2

1 ˆ: 0 1, 0
ˆ ˆ1 1

ˆ: ,or 0

j

jj

j
y j N

ja

j N


  





       
  


 

So by Theorems 1 and 2 we have obtained the optimal 
error and an optimal method for all scenarios. In each 
case i and ii, 

0

1̂  and 2̂  
l recove

are given by (25). In each case, 
the error of o a ry is  ptim

  2
1 2
ˆ ˆ, ,NW KE       which for case 2) simplifies 

to   1

1

, ,N y
E W K

x
 .

optimal recovery is given

  Also for each case, a method of 

 by   1

0
ˆ N j

jj
m y a z


   where  

2̂



in case 2) this simplifies to since in case 2),  ˆ 0m y   
0 .

One
  

 may be able to red ount information 
ror of optimal re

 number of t
the comp

Th

uce the am
needed without affecting the er covery. 
Therefore, by reducing the erms in the 
optimal method we reduce ututaions needed. 

llowe fo ing ideas are in [9]. We consider the subset 

sJ C , 0s s  as the set of all points whose slope to 
the origin is greater than the slope of  x  for 

 1,s sx x x  , that is the slope of the line segment 
between points  ,s sx y  and  1 1,s sx y  . Define the 
sets 

   1 1

1

0 1: 1 ,s s
j

s s

y
J j N j

x x


 


s

y 
      


 

for 

 

00,1, ,s s    where if  define  0j 

  1j j
1

   . Now consider the same problem as  

stated in Theorem 4 using only information sJK f . For  

, we have 0sy  1 1

1 1

s s s s

s s s s

y y y y

x x x x
 

 

 


 and s


o 
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   1, , ,s s s s     2

1 1 , 1j
j Js

x y x y  j j   . In this  


situation, 00 s s
rec

   with 0 , it was sh hat thsy 
ry only in

own t e 
error o ove volv o points  


f optimal es the tw

   1 1, , ,s s s sx y x y   
N

then the reduction in information  

from K  to sJK  will not change the error. That is  

 , , , ,sE W K K JN E W   and if sJ N  , an opti- 

mal method is 

   
0

ˆ ˆˆ 1
N

   
12

1 2 1 1 k

k k

j
j k k j

k

m j j y z  


     y
 

where j jy y 0
, ,

N
y


 . 

3.3. Varying Levels of Accuracy Termwise 

In Theorems 3 and 4 the inaccuracy of the information 
 a total inaccuracy. That is, the inaccuracy given is 2  is 

the  total of the inaccuracies in 
 3 

acy 

an upper bound on sum
each term, be it a finite or infinite sum. For Theo
and 4 however, there is no way to tell how the inac

rems
cur

is distributed. In particular, with regards to Theorem 4, 
the situations in which the given information  

 0 1, , Ny y y     satisfies 

, = 0, , 1j jK f y N j N     

or for some particular m  satisfying 0 1m N    

:
j j

j m
K f y

 
 

0 : j m
 

 

are treated the same. For the next problem of optimal 
is ambi oblem of opt  

mal recovery is to determine an optimal method and the 
optimal error of recovering

recovery we address th guity. The pr i-

 f X  , from the infor- 
mation  0 1, , N

Ny y y       satisfying 

j j jK f y    

for some prescribed 0j   and 0, , 1j N  . 
To define X   use conditions and (20) as pre- 

viously al restriction
 (6) 

bu e an addition . We add the 
condition 

1, .

t impos

   11 2 , 0,jj j j        j

Define  0 1, , N      where 0j   are the le- 

vels of accuracy. If 2
0 0 1    define 

 22
0

0

max 0 : 1 1, 1 .
p

j j
j

p p j p N 


 
     

 
   (27) 

rthermoSo 0 0p   and fu re 
0 1p 0 

2 1    will be tre rately. 
 . The

ated sepe
 If  let 

 case  

0 0

Theorem 5: 2
0 0 1  

 
0 1 0

1ˆ
2p p


 




          

1

then the error of optimal recovery is give

 (28) 

 2ˆ1 1 :j
j

j j

p

  
 


0

0

ˆ
0 : 1

j p

j N


 

  
 



n by  

 
0

2

0

ˆ ˆ, ,
p

N
j j

j

E W K    


          (29) 

and  

 
0

ˆˆ
0

p
j

j jm y y z                
j

  (38) 

is an optimal method. 
If  then2

0 0 1      1 2
0, ,NE W K     and  

 m̂ y 0  is a
Proof. The 

n optimal method. 
dual problem in this situation is  

 2

2
max

L
f                (39) 

 

2

2 2 , 0, 1
j

f j
2

1, 1, ,
1

jX
N

j

a
    (31) 

w






ith the corresponding Lagrange function  

 
 
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2 2
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2
0 0 0

2
1

2

2

2

2

,
1 1
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 

  


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

   
 

    

   


  







 

The method of proof will be to first determine  

1N 

2
0 1

j j
j j 

 1 1
ˆ ˆ ˆ ˆ, , , N       with  and  ˆ ˆ, 0j   f̂ X  admi- 

ssable in (31) and satisfying 1) and 2) of Theorem 2. 
If  and f̂, define ̂2

0 0 1    as follows:  

 
0 1 0 2p p


 




 
1ˆ

̂ 2
1 1 :j j j p

p

    
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0ˆ j
j    

00 : 1 1j N   

 

 
0

0

0

1 2

22
0

0 1

0

1 :

1
ˆ 1 1 :

0 :

j

p

j j j
j p

j j

a j j

j p



 
 

 

  

1

.

p

p         
 

  
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To verify  assume  in which case 

1 hence  

ˆ 0j 

j p 
 0j p

 j   and    
0

2

1 01 2j p   

   
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
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   

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To show for the chosen ̂  and any f X ,  

 ˆ, 0f   , we consider the cases  or .  

For we know by assumption  
 and hence  

 0j p  0j p

0j p  

   
0 1 0 2 1p jp j    
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2j jj
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0

 f X ,  ˆ, 0f   . For the con- 

structed f̂ , it can shown that  be  ˆ, 0f    as de-  

sired. and thus f̂  minimizes the Lagrange function

To show 

. 

f̂  is admissable in (31) we can clearly see 

that for j p , 0  

2

2
2

ˆ

1

j

j

a

j



. It remains to show 

 
0
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1 2
2

p
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
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0 2p 

 

â
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which contradicts the definition of  unless  
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
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    
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  

an ˆd so f  is admissable in (31). 

By the construction of f̂  we also have the results  
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2

2
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ˆ

1

j

j

a

j



ˆ 1

X
f   for   while  0j p ˆ 0j    

for . Thus 0j p f̂  satisfies 2) of Theorem 2 as  
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
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N
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We no ed to the ex ble

   

w proce tremal pro m  

0 22

=0

min, .j jX
j

ˆ ˆ
p

jf K f y f X       

Notice the upper bound on the sum is 0 1p N   as 
ˆ 0j   for any . This extrem l 

ution 
0j p al prob m wille
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ˆ 1 ˆj j
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  

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 



 

 
 

Therefore the error of optimal recovery is given by  

 
0

2

0

ˆ ˆ, ,
p

N
j j

j

E W K    


   

and  

 
0

ˆˆ
p

0

j
j jm y y z    

j

is an optimal method. 
Now we proceed to the case . Choose 2

0 0 1  
1

0̂    and ˆ 0j   for . Then as 0,1, , 1j N 
 1j0  j   for all 

2

0  j 

   
       1

0

ˆ 1 1

1 1 1 1 1 1 0.

j

j
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j j j



 

  

      
 



 to satisfy (31). 
Furthermore 

Thus  ˆ, 0f    for all f X  . Let 1 2
00â     

  0
ˆ ˆf z aand  and notice 

2ˆ 1
X

f   and clearly  

2 1 2
0 0â 0    so f̂  is admissable in (31). Further-  

more  

   2

0 0
ˆ ˆ ˆˆ, 1f a  0    
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and so    ˆin ,
X

ˆ ˆ, m
f

f f  . Als


 o, 

 
 

2
2ˆˆ ˆ ˆ1 1j

X
f               



Therefore 

2
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ja  

2
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1 0 0.
1

j
j j  
  

  1 2
0

ˆ, ,NE W K       and  ˆ 0m y    

is an optimal method. 
ptimal method may n l of the information 

provided as  may be less than . Thus in- 
creasing y not change an e not change 
the error thod. If 

  
The o ot use al

 0p
ma
 me

1N 
d hencN  

or the
0p  

p N0 1  , then  

   0 1, , , ,p NE W K E W K    

an duce the amount of inform

m io

d we can re ation needed for 
a given optimal error. 

If 0 1p N   we may be able to reduce the error of 
optimal recove  if we have more infor at n available. 
Fix 

ry
 0 1, ,      . The reater number of terms 

we have of 
 g

Kf  then the e may be able to 
approximate 

better w
f , that is th e optime smaller th al error of 



recovery. Let 

 22max 0 : 1 1
p

j jN p j  
 

    


      (41) 
0j

and for N     

  , , , ,NE W K NE W K     

for any N  . If we know the first N0   terms with 
some errors, then further increasing th rms will not 
yield a decrease in the error of optimal recovery. 

3.4. Applications: The Hardy-Sobolev and 

We now apply the general results to the Hardy-Sobolev 
and Bergman-Sobolev spaces of functions on the unit 

tio

e te

Bergman-Sobolev Classes 

disc. Let   denote the set of func ns holomor- 
phic on the unit disc. Define the Hardy space of functions  

 2   as the set of all  f   ,  

 

0
j

jj
f z

  a


 z

with  2f  
   where  

 
2

2
0

.j
j

f a


    

The Hardy-Sobolev space of functions, 



 2,r  , are 
those  f    such that    2rf    and  

2,r   is the class consistin sH g of tho e  2,rf     

with  
 2

1rf 
 

. The Be   

is the space of all  such that 

rgman space of functions

 2    f  

   
2
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d .

L
f f z A   

 

 2   That is, is the space of all holomorphic func- 
tions in  2L  . The Bergman-Sobolev sp func-  

tions,

ace of 

   , consists of  f    w2,r ith 

 f   2r    2,r   as the class of all  and 

   with  2,rf 
 2

1r

L
f 


. 
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     
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   

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For each space of functions we have the collection of  
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2,: , rj X
 

   

0 :



      2
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j
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
   


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
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In this case e collection of points  
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      22,
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j
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
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

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It is easy to see  that if  then the piece-  

wise linear function 

 2,rM co C


    max : ,x y x y M    will  

have points of break  

   
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1 !j
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r j j r r
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   (42) 
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 and  

thus the points of break of 

Again let       2,max : , rA
x y x y co C  
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 
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Thus, in the applications of the general results, this 
case will be treated separately. 
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We now apply Theorem 4 to the Hardy-Sobo ev 
spaces  and Bergman-Sobolev spaces in 
which 
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0  then
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It should be noted that the optimal method described i
pect to the inaccurate information data. 
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If 1̂ 1   and 2 0̂   then  ,f for any  
2,0

1,0 0  

f A . Now roceed as in the proof of Theorem 4 to 

 
We now apply Theorem 5 to the spaces 2,rX   or 

2,rX   for 0 r

p  

obtain the result. 

1
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for all 0 1N  .  
As a di sequence f Theorem 5, we consider 
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