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ABSTRACT

This paper addresses the optimal recovery of functions from Hilbert spaces of functions on the unit disc. The estimation,
or recovery, is performed from inaccurate information given by integration along radial paths. For a holomorphic func-
tion expressed as a series, three distinct situations are considered: where the information error in L, norm is bound by

& >0 or for a finite number of terms the error in 1)’ norm is bound by & >0 or lastly the error in the j™ coeffi-
cient is bound by &; >0 . The results are applied to the Hardy-Sobolev and Bergman-Sobolev spaces.
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1. Introduction

Let W be a subset of a linear space X, let Z be a normed
linear space, and T the linear operator T : X — Z that
we are trying to recover on W < X from given
information. This information is provided by a linear
operator |:X —Y where Y is a normed linear space.
Forany xe X weknow some §e€VY thatisnear IX.
That is, we know Yy €Y such that

|||x—y||Y <S5 (D)

for some 6 >0. The value Yy is our inaccurate infor-
mation. Now we try to approximate the value of Tx
from ¥ using an algorithm or method, m. Define a
method to be any mapping m:Y — Z, and regard
m(¥) as the approximation to Tx from the infor-
mation ¥ €Y . Our goal is to minimize the difference of

Tx and m(§) in Z, ie. minimize [Tx-m(y)],.
However, the size of ||TX—m()7)||Z. varies since ¥

can be chosen to be any yeY satisfying (1). Further-
more Ix varies depending on the XeW chosen. So
the error of any single method is defined as the worst
case error

e(TW,1,6,m)= sup [Tx-m(y)|
ot

z°

Now the optimal error is that of the method with the
smallest error. Thus the error of optimal recovery is
defined as
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E(TWY)= i, sup, x5,

Ix-3ly <o )
inf e(T,W,Y,m).

myY—->Z
For the problems addressed in this paper, let Y,,---,Y,
be linear spaces with semi-inner norms || , and
I, : X =Y, linear operators, | =(I1,~~-,In). We want
to recover Tx for

xeW =W, ={X€X:|||jX||Y so‘j,lsjsk,oskSn}
J
(where if k=0 welet W, = X ), if we know the values
¥, satisfying |||J.x—yj||Y <o; for j=k+1,---,n.
i
Define the extremal problem

[, > max, J1;x[ <&.j=L-.n xeX. (3)
]
This problem is dual to (2).

2. Construction of Optimal Method and
Error

The following results of G. G. Magaril-II’yaev and K. Yu.
Osipenko [1] are applied to several problems of optimal
recovery.

Theorem 1: Assume that there exist 4, >0,
j=1---,n such that the solution of the extremal
problem

no. no.
[T} — max, JZ:;AJ. L J.x||jj S,Z; 52, xeX (4
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is the same as in (3). Assume also that for each
y= (yl,"-,yn)eY1 x---xY, there exists

X, =X(y,,--,¥,) which is a solution to
St x=y,[f > min xex.
= '

Thenforall k,0<k <n,

E(T.W,,1,6)= sup ||,
Il 0710
and the method
D (Yierrs o Yo ) = TX(0 .0, Y172y )

is optimal.

Theorem 1 gives a constructive approach to finding an
optimal method M from the information. It follows
from results obtained in [1-7] (see also [8] where this
theorem was proven for one particular case.)

In order to apply Theorem 1 the values of extremal
problems (4) and the dual problem (3) must agree. The

following result, also due to G. G. Magaril-II’yaev and K.

Yu Osipenko [1], provides conditions under which the
solution of problems (3) and (4) will agree.

Typically, when one encounters extremal problems,
one approach is to construct the Lagrange function L .
For an extremal problem of the form of (4), the corre-
sponding Lagrange function is

L L1 = | [

Furthermore, X e X is called an extremal element if
2 . .. .
"I J.)A("Y < 5j2 for j=1---,n and thus admissible in (4)
j
and
Al12 2
[Tl = sup [T
) xeX
HlijYj <57 j=ln.

Theorem 2: Let 4, >0 and Xe X be such that
Aj <) for 1<j<n and
j

). leg{lﬁ(xjw“'a/in):E()A(jqa“"in)

1R
2) ZJIJU j Yj_é‘jz):

Then X is an extremal element and

n A
Sup "TXHE = Sup "TXHE =245
xeX xeX j=1
2 2 s n
13y, <o =t z Al xH <zn Py

If we wish to combine Theorems 1 and 2 to determine
an optimal error and method then we must show the
posed problem is able to satisfy equating extremal pro-
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blems (3) and (4). Through Theorem 2 we have such a
means available.

3. Main Results

Consider the class of functions defined on the unit disc
D= {Z :|Z| < 1} given by

X=X, :{f (2)=3a,2": 3, lay[ <oo} (5)
=0 j=0

for a;eC, y; 20 satisfying

liminf 7/1/ '>1 (6)
jow
and
tim (7, (i+1) " =o0. 7

Therefore, any f e X is holomorphic in the unit disc
by (6). We define the semi-normin X as

I, =[Sl |

and
={fex:|f], <1}. ®)
Let K:X = L,(T), T=[-=,x], be a linear operator
given by
= [f (re*)dr.
That is, Kf is the radial integral of f . To see that

Kf €L, (T), by (7) we have for all but finitely many j,

for some ¢>0. Thus if ||f||x <o then

7J2 2

(i+1)
| f "Lz(’]l‘) <®©
We assume to know Kf (¢) given with a level of

accuracy. That is, for a given 6 >0, we know a
yeL,(T) such that

IKE = 9|,z < 6. ©)

The problem of optimal recovery is to find an optimal
recovery method of the function f in the class W
from the information y satisfying (9). The error of a
given method is measured in the L, (D) norm defined

by
[l =[5 17 (%)

Any method m:L,(T)— L, (D) is admitted as a re-
covery method. Let {aj}jEN,{ ﬂj}jeN be sequences of

2

1/2
rd¢drj

non-negative real numbers such that
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limfB, =, lim—=0.

joo joo aj

Define C :CO{(O,O)U{(aJ-,,BJ- )} } to be the con-

jeN

vex hull. Define 6(x) for xe[0,:0) by
H(X)zmax{y:(x,y)eC}.

Lemma 1: The piecewise linear function € with
points of break (X,y,) $=0,1--, with x; <x <--,
for xe[x.x.,] given by 6(x)=Ax+4, is such that
4220, _

Proof. Assume that A = Y1 7Y 0 It means that
Ysu <Ys . Since f; >0 )%ﬁld—)&j — o as J—>oo
thereisa ke N suchthat ¢, >X, and f, >Y,.Then
the interval between (X,y,) and (&,/) belongs to

C. Consequently, 0(x.,,)>VY,., and (X,,Y,.,) is not
a point of break of 4.

Assume that 4, <0. Since (0,0)eC the interval
between (0,0) and (X,,,Y,.,) belongs to C. Geo-

metrically, the line (0,0) to (X,,;,Y,,,) will lic above

the line O(x)=A4X+4, . It means that 6(X)> Y,
contradicting that (XS s ys) is a point of break of 4.

Note that as |im;_..— =0 then for any fixed
a .
i
(a./3,) the slopes between points (a,,/,) and
(aj v ) also tends to 0 as

ﬁj ﬂb

3.1 Inaccuracy in L,(T) Norm

Consider the points in R given by
(jH1),+1 }
{(7J (J ) J ) jeN

origin and this collection of points as M :

M = co{(o,o)u{(yj (j+1Y,] +1)},-€N}' (10)

and define the convex hull of the

Let
H(X):max{y:(x,y)eM}, 1D

thus € is a piecewise linear function. Let (X,Y,),
s=0,1,--- be the points of break of & with

0=X, <X <---. By (7) the assumption for Lemma 1 is
satisfied by @, zyj(j+1)2 and f;=j+1.

Theorem 3: Suppose that X, <& <X with

S+1
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y, >0. Let

3 Ysi = ¥s
j=dat,

/’1‘2 _ Y X1 = Vs Xs ) (12)
Xsi1 — X

Xs+1 - Xs
Then the error of optimal recovery is
E(W.K.8) =4 + 45", (13)
and
m(y)= jio(lwil,i;lyj (j+1)2)_1(j+1)yjzj (14)
is an optimal method of recovery. If y, =0 then

E(W,K,5)= % and m(y)=0 is an optimal me-
1

thod.
Proof. Consider the dual extremal problem

[l > max, [ <1 KL <67 09)

which can be written as

gﬁpjr > max,
1
e e

where f(z)= Zioajzj . Define the corresponding

Lagrange function as
2
3
(i+1)
Let the line segment between successive points
(X, Ys) and (X, Ys,) be given by 6,(X)=AX+4,.
That is 6, =6 Thus /il,iz are given by (12).

E(f,ﬂm)ié (475 (i+1) + = (i +1)

s %] *
Take any (yj (j+1)2,j+1) , then by definition of the
function € we have
i+1=0(7,(i+1)7) <0, (7, (i+1)°).
Thus forall j=0,1,---
j+1£j1;/j(j+l)2+ﬁ,2
and hence £(f,4,4)>0 forany feX.

We proceed to the construction of a function f
admissable in (15) that also satisfies

A ~12 A A
ﬂq(uf . _1)%(”}«
As y, =0 if and only if s=0 and y,=0 then
Y, >0 if and only if s>0 or y,>0. Let k,k'eN

A

2
—52)=0. Assume Y, >0.
L(T)
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be the indices that satisfy
(xs,ys):(;/k (k+1)’ ,k+1)

and
(Xs+1) y5+1):(}/k, (k'+1)2 ’kl+1) )

We let a; =0 for j#k,k', and choose a,,a, so
that they satisfy the conditions

Yk |ak|2 +7/k’|ak’|2 =1

1
(k+1

2 1 2 2
a a.| =0". (16
)2| k| +(k,+1)2| k| ( )

From these conditions let

2 ' 2
5y (K'+1)-1
1)’

Y (k’+1)2 -7 (k+

a, :(k+1)L

1o, (ke )
ak,z(k’+1)[ L ]
;/k,(k +1) —;/k(k+l)

1/2
_y [1—52xSJ/
T s+l
. Xor1 =X

A

f(z)=a.z" +a.z". (18)

an

and

Now if X, <87 <Xx,, with s>0 or s=0 and

Y, >0 the function f isadmissible in (15) and

E( fA,/il,/iz) =0, that is f minimizes £ (f,/i,/iz)

and condition 1) of Theorem 2 is satisfied. Furthermore,

by construction, f satisfies condition 2) of Theorem 2.
If y,=0, that is s=0 and y,=0, define a, as

in (17). Thenas x, =0

1-s%x )"
a =Y, . = ylel/z = 71:’1/2'
X =%

Solet f(z)=a,z" andwe have
|

Thus the function f is admissable in (15) and
satisfies 1) and 2) of Theorem 2. It should be noted that
in this case 4,4, aresimply 4 =y,/x and 4,=0.

Now we proceed to the extremal problem

! i<52.

7e(k+1) %

-1

2
Ly(T)
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A

4
feW,yel, (T)

K33l + AT, i

This problem may be rewritten as

- 2 A @ 1 5 2 ) 2 .
/122|yj| +J,ZZ:_—aj—yj +/1127j|aj| — min
= oo J+1 i=0
which has solution
j+1 o 5
— ¥.:120,4, #0
a, = 1+ A4 (j+1) &
0 : otherwise

So for X, <& <X, Y, >0 by Theorems 1 and 2,
(14) is an optimal method and the error of optimal
recovery is given by (13). If y, =0 then

E(W,K,5)= \/z and M(y)=0 is an optimal me-
Xl
thod. O o
It should be noted that for fixed 4,4, # 0, that is for

afixed 6 >0, the terms
A A . -1
&= (14447, (i+1) ) (i+1)

will have the property, 0<¢; <1 and limg; =0 as
]

lim(;/j(j+1))_1:0. So M smooths approximate
Jox

values of the coefficients of § by the filter &;.

3.2. Inaccuracy in 1;' Norm

Our next problem of optimal recovery remains to recover
f e X=X, from inaccurate information pertaining to
the radial integral of f. However, the inaccurate infor-
mation we are given are the values
Yo, Y15+, ¥y € C such that
N-1 )
K f -y, <&

=0

where K;f is the j™ coefficient of the radial integral
Kf ,

K, f = (Kf(g),e™) .

Ly(T)
Denote
KN = (KO, K-, KN—I)'

We again consider the space of functions X =X,
given by (5) and M and € defined by (10) and (11)
respectively but now add the condition

7, >0, j=N. (20)

The problem of optimal recovery on the class W
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given by (8) is to determine the optimal error
E(W,K",5)= (23)

inf Sup f-m(y (24)
TESSOIE N l(yo eIy el ” ( )”LZ(D)
go‘K f- yl‘ <

and an optimal method M:C" — L, (D) obtaining this
error.
Define |, € N as the largest index such that

(740 (1, +1)) —max{(7, (I+1))71}, 1)

which by (7) exists, and

— ] . y +1 y
S, = mm{s >0: <7Io (1, + 1)) X:H : } (26)
Theorem 4 Suppose X, <&~ <X, with s<s,. If
y. >0 let 4= =Ys gng 4 =YX T¥euXs
s+l Xs X$+l - Xs

Then the optimal error is

E(W,KN,é):w//i +1,6° (22)
and
m(y):EI(HU,;%(j+1)2)_1(j+1)yjzj (23)
j=0

is an optimal method. If y, =0 then

E(W,KN,§): I and M(¥)=0 is an optimal me-
X

1
thod.
If 62 >x, and y, >0 thenwith

A =(n, (1 +1))_1 and 4, =y, —x_ 4 theerror of op-
timal recovery is (22) and (23) is an optimal method. For

y, =0, E(W,K",5)= % and M(¥)=0 isan op-
1
timal method.

Proof. For the cases X, <d <X, with s<s, we

simply apply the same structure of proof as in Theorem 3.

For the case & > X, there remains some work.
Our construction will depend on whether or not
Y, =0, that is whether or not s, =0 with

(xSO,ySO ) =(0,0).

First we notice y, <N . Assume not. Then if
Y, >N >0 we also know X, >0 since for all
iZN we assumed y;>0. Since X,=0 we know
Sy >0 . Then by definition of s, we know for
0<s<s,,

1

rard AU}
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and substituting s=5s, -1 we have

h> yso - yso—l > (j/lﬂ (IO +1))—l

X, X =X
which contradicts the definition of |,

S0
. Therefore
5 <N andif (XSO Vs, ) = (}/C (c+1)’ ,c+1) then

c<N.
In either case,
is of the form

Y, =0 or y, >0, the dual problem
2
|| f ||L2(D) — max, (24)

[0 <1, EWﬁrﬁy,fex

The corresponding Lagrange function is then

( 7 O (ay; (§+1) + 20 2 (i +1)

where zV j 1s the characteristic function of
{jeN:j<N}.
Case 1): y, >0

If y, >0 let ¢ correspond to the index satisfying

(xSO,ySO)=(7C (c+1)2,c+1).

To determine /il,iz let y:/7A1X+ﬂA2 be the line
through the point (xsﬂ,yso) that is parallel to the line

from the origin to (7/,0 (1, + 1), 1, +l) . That is, let

A=(r (o+D)) A=y, x4 @9
] +ﬂ:z and

So for any point of break we have Yy, < 4X,
for any index j< N -1, we obtain

j+1£6’(7/j (j+1)2)£i1yj(j+l)2+/iz.

If j2N then

J(3+1)=1= (5, (+1)) 7 (3 +1)-1

( J+1) J(j+1)-1
0.

Thus for the chosen 4, and A, and any feX we
have E(f,/ﬂ,iz)zo.

To construct f e X admissable in (24), let a; =0
for j#c,, anddefine 4,4, Dby thesystem

A N-
I - §

and since 0<c<N <I,

K, f[ =

this becomes
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~ |2
A |2 A |2 ac 2
Sla | +x 1 | =1 =0".
7| | 7|0| |o| (C+1)2
@ 5, \V2
Solet 4 =&(c+1) and & :[M] .
N

Then for 67 >y, (c+1)’ = X, the function

f(z)=4,2°+4,z" isadmissable in (24) with
ﬁ(f,i,@):
Therefore E(fA,ﬁl,/@):minfex £(f,/i1,/i2) and by

~lI2 B A2
construction we have “f“ =1 and Z.NJ‘K.f‘ =0’
X j=0 ]

(I )4 Sl -0

and conditions (a) and (b) of Theorem 2 are satisfied.

Case2): y, =
If y, =0 then (XSO Ve, ) =(0,
this is the only point in the set

{(O,O)U{(;/J—(j+l)2,j+1)}_ } with a y -coordinate
jeN

of 0. Furthermore, as (0,0) is a point of break of &
we know y; >0 for all jeN. Since s, =0 then by

so that

0),and s,=0,as

the definition of s, we know Ng (}/,0 (1, + 1))71 .As
Xl

L:max{(ﬂ/j (j+1))71}

X j=0

> max{(?’j (J +1))_1} = (7’|0 (Io +1))71

j=N

(26)

then we obtain equality, % = ( "y (IO + 1))‘1
1

Define 4,4, by (25)so 4 = N and A, =0.If we
X

1

let feX be f(z ):(7|) 7" then

~ (1l ~l12 A (N A2 )

A1 e e -2
=4 (1-1)+0(0-6%)=0

In addition f is admissable in extremal problem (24)

as “f“i <1 and ZT‘:_OI Kjf‘zzOSc?z.

To justify E( f,4, /@) >0 simply note that as
(%,y,) satisfies (26)and »; >0 forall j>0 then

Copyright © 2012 SciRes.

ﬁ}q (j+1)=1>0. So we have

2
| |(y1yj(1+1) J>0.Since

( ﬂlﬂ?) i+l

E(f,/iq,iz)zO then f minimizes L .

For both cases, we now consider extremal problem
R By A N-1 2 .
/11||f||>< +/1ZZ|KJ- f —yj| —min, feX.
i=0
This problem can be written as
A © 3 A N-1
4 Z:,)?’j |aj | +4, ZO
i= i=

which will have solution

— min,

2
i_y‘
j+1 7!

I g e<iN-1L 20
a, =11+ 44,7 (J+1)
0 :j=N,or 4, =0

So by Theorems 1 and 2 we have obtained the optimal
error and an optimal method for all scenarios. In each
case i and ii, Z} and /iz are given by (25). In each case,
the error of optimal recovery is

E(W.K",8)=14+46> which for case 2) simplifies

to E (W, KN ,5) = \/z . Also for each case, a method of
Xl

optimal recovery is given by M(¥)= Z aij where

in case 2) this simplifies to m(y) =0 since in case 2),
A, =0.0

One may be able to reduce the amount information
needed without affecting the error of optimal recovery.
Therefore, by reducing the number of terms in the
optimal method we reduce the compututaions needed.
The following ideas are in [9]. We consider the subset
J,cC, s<s, as the set of all points whose slope to
the origin is greater than the slope of &(x) for

X €[X, X, |, that is the slope of the line segment
between points (X,,Y,) and (X,,Y,.,). Define the
sets

. . S Ysu 7Y
J,=30< J<N-1:(y (j+1 > :
: { j (7 (i+1)" xm—xs}
for s=0,L,---,5, whereif 7 =0 define
( 7 ( j+ 1))7l = oo . Now consider the same problem as

stated in Theorem 4 using only information K’ f . For

y_ y5+1 > st Js ys+l ys
X X —

S s+1 s+1 s

Y, >0, we have and so
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(X5 Ys)s (Xu1> Yeur ) € {(;/j(j+1)2,j+l)}_ J . In this
jedg

situation, 0<s<s;, with y, >0, it was shown that the

error of optimal recovery only involves the two points

(X5 Y5 )s(Xss1» ¥ssr ) then the reduction in information
from K" to K’ will not change the error. That is
E(W,KN,5)= E(W,KJS,(s) and if |J,|=N, an opti-

mal method is

0(9)= 3 (1447, (+)) (),

k=0

where y:(yjo,-~~,yjN )

3.3. Varying Levels of Accuracy Termwise

In Theorems 3 and 4 the inaccuracy of the information
given is a total inaccuracy. That is, the inaccuracy &7 is
an upper bound on the sum total of the inaccuracies in
each term, be it a finite or infinite sum. For Theorems 3
and 4 however, there is no way to tell how the inaccuracy
is distributed. In particular, with regards to Theorem 4,
the situations in which the given information

Y =(Yo»+»Yn_y) satisfies

or for some particular me N satisfying 0<m<N -1

. S:j=m
ko=l o

are treated the same. For the next problem of optimal
recovery we address this ambiguity. The problem of opti-
mal recovery is to determine an optimal method and the
optimal error of recovering f e X , from the infor-
mation §=(¥,, -, ¥y_,)eC" sat1sfy1ng

K, f -y <0,

for some prescribed 6; >0 and j=0,---,N-1.

To define X, use conditions (6) and (20) as pre-
viously but impose an additional restriction. We add the
condition

J(J+1)<7/J+](J+2) J:()sls

Define & =(6,,---,6y_;) where &, >0 are the le-
vels of accuracy. If y,5; <1 define

p
P, :max{p20:25j27j(j+1)2 <1, p<N —1}. 27)
=0

So p, 20 and furthermore y, ., >0. The case
7,9 >1 will be treated seperately.
Theorem 5: If y,5; <1 let

Copyright © 2012 SciRes.

oL (28)

7p0+1(p0 +2)

P j+1-Ay;(i+1):j<p,
: 0 p+1<j<N-1

then the error of optimal recovery is given by
_ A~ Qo L
E(W,KN,5)= [1+D6}4, (29)
j=0

Po . .
m(y)=>49;2' (38)
=0

is an optimal method. B
If 7,60>1 then EﬂW,KN,5)=7(;'/2 and

and

Mm(¥)=0 isan optimal method.
Proof. The dual problem in this situation is
2

[, ) — max (39)

2

2 |a | 2

If[, <1 ——=<67, j=0,1---,N-1 (31)

(i+1)

with the corresponding Lagrange function

L(f.2)= Z| |+/1127/J|a| +Z/1 il

i (i+1)

(1) 42, - (+1))

_5 |‘5‘i|2
=

i(ljl) (47, (141 = (i+1))

The method of proof will be to first determine
A=A A, dy,y) with 4,420 and feX admi-

ssable in (31) and satisfying 1) and 2) of Theorem 2.
If y,00 <1, define A and f as follows:

1

I S
yp0+l(p0+2)
5=y (iv) s sy
: 0 P +l<j<N-1
5,(j+1) Si<p,
12
A A .
a =4/ |1-26; (i+1) (j=p, +1
j=0 Yoo+l
0 2> P,

AJCM



A. DEGRAW 265

To verify /ij >0 assume j<p, inwhich case
7 (] +1)2 <Vpn (Py+2)(j+1) and hence

2j+1_ )7/p0+1(p0+2)(j+1)20’

7/p0+1(p0+2

To show for the chosen A andany f e X,

E(f,j)zo,we consider the cases j<p, or j>p,.

For j>p, weknow by assumption
7p0+1(po +2)<y;(Jj+1) and hence

A . 1 .
Ay (j+1)-1=— 5 (j+1)-1
J( ) yp0+1(p0+2) J( )
>1-1=0
For j<p,
/i;/j(j+1)2+/ij—(j+1)

=y (1) + (1012, (1)) =1 #1) =

Thus for any feX, L(fﬁ)zo. For the con-

structed f , it can be shown that E(f,/‘z):o as de-

sired. and thus f minimizes the Lagrange function.

To show f is admissable in (31) we can clearly see

a.
that for j<p,, | J| -<6; . It remains to show
(i+1)
. 2
|apo+1 2
——— 5 <0, for p, <N-1.Assume not, then
(py+2)°

Po A 1
[1—251271-(1“)2)—2 >
i=0 ;/p0+1(p0+2)

which occurs if and only if

po+1

1> 252}/1(]+1)

j=0

which contradicts the definition of p, unless
Ppo=N-1.1If pj=N-1 then p,+1=N and hence

2
we no longer need the condition M < 52 L1 in
(P, +2)°
order for f to satisfy (31).
Furthermore
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2
po+1

A2 Po 2 .
f . :£Z}/J—|aj| j+;/p0+1 a
=0

{3

is admissable in (31).
By the construction of f we also have the results

12
A a;
”f =1 and &l =52 for j<p, while 4 =0
" (i+1)
for j>p,.Thus f satisfies 2) of Theorem 2 as
2
A 1) 5 L s o
j:oJ (j+1)

We now proceed to the extremal problem

andso f

AR+ 34 K, t =9, > min, fex.
=0

_Notice the upper bound on the sum is p, <N -1 as
A;=0 for any j>p,. This extremal problem will
have solution

i j+1 . A
a; = ( )J”lj
0 :j>p0

Therefore the error of optimal recovery is given by

- A QA
E(W,K",5)= A+352,
j=0

and

is an optimal method.

Now we proceed to the case 7,9; >1. Choose
A= 7;' and /1 =0 for j=0,1,---,N—1. Then as
7o <7;(i+1) forall j=0

iyj(j+1)2—(j+1)

=(i+1)(%'7; (i+1)-1)=(j+1)(1-1)=0.
Thus z:(f,i)zo forall feX,. Let & =7"
and f(z)=4, andnotice “f”i =1 and clearly

|z§0|2 =7/0’1 S502 so f is admissable in (31). Further-

more

2 2(2%—1):0
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57 [=A(1-1)+0=0.

Therefore E(W,KN,5)=\/E=70_1/2 and m(y):o

is an optimal method. O

The optimal method may not use all of the information
provided as p, may be less than N-1. Thus in-
creasing N may not change p, and hence not change
the error or the method. If p, < N -1, then

E(W,Kpo”,g) = E(W,KN,a)

and we can reduce the amount of information needed for
a given optimal error.

If p,=N-1 we may be able to reduce the error of
optimal recovery if we have more information available.
Fix 6=5, =(6,,6,,---). The greater number of terms
we have of Kf then the better we may be able to
approximate f , that is the smaller the optimal error of
recovery. Let

P
NJ=max{p20:z5j2}/j(j+1)zsl} (41)
j=0

and for Ny <o
E(W,KN",d)g E(W,KN,5)

for any N >0. If we know the first N, terms with
some errors, then further increasing the terms will not
yield a decrease in the error of optimal recovery.

3.4. Applications: The Hardy-Sobolev and
Bergman-Sobolev Classes

We now apply the general results to the Hardy-Sobolev
and Bergman-Sobolev spaces of functions on the unit
disc. Let H(D) denote the set of functions holomor-
phic on the unit disc. Define the Hardy space of functions

H*(D) as the set of all f eH(D), f(z)=>" a7’

j=0%i

with ||f||H2(D) <o where

£l = 2fa]-
j=0

The Hardy-Sobolev space of functions, H>" (HD) , are
those f eH (D) suchthat ) en? (D) and
H>" (D) is the class consisting of those f e H>" (D)

with H £(0

20 <1. The Bergman space of functions

A*(D) is the space of all f € H(D) such that
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"f"iz(m)) = mf (Z)|2 dA <o,

That is, .A*(D) is the space of all holomorphic func-
tions in L, (D). The Bergman-Sobolev space of func-

tions, A>" (D), consists of f e H(D) with
") e A>(D) and A" (D) as the class of all
feA (D) with [f0] <1

L (D)
So each space can be considered as the space X,
with

0 tj<r

2
J r<j, X =H*>" (D).

(-1

2
J’ 1 < i 2,r
<, X=A>"(D

[(j—r)!J j-r+l1 r=J (2)

For each space of functions we have the collection of

. . 2 .
points C, :<{aj,ﬂj}):({7j (j+1) ,j+1})jEN JIf
X =H*" (D) thenfor j=r

yi(i+1) {(ji!r)j(jﬂ)z {%T

Therefore for r=0,1,---

. 2
iy e (GO
}g{g(% (i+1)) = }gg[ i ] T
In this case we consider the collection of points

O Y T R

It is easy to see that if M = CO(CHZ,r ) then the piece-

wise linear function 6(x)= max{y (xy)eM } will

have points of break

r Mz'+ j=r,r+l,-
(0,r)y {[(j_r)!J,J 1}.1 JP+1e bt (42)

For the space .A>", the points to consider are
Cor = {(o,o)u{(yj (A>)(i+1).] H)},-EN}'
Again let 6(x)= max{y ((x,y) e CO(Cszr )} and
thus the points of break of @ will be precisely
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[ S+l j=rr+l1,---

For the special case of .A>’, the function @ has only
a single point of break at the origin as

Co ={(0.0)Uf(I 415+ 1)}, |

so that #(x)=x for x>0. Furthermore, A™’ does
not satisfy (7) as

11m(7J(A20)(j+1)) —th(JH) 1.

jow joo )+

Thus, in the applications of the general results, this
case will be treated separately.

For notational purposes, let (X,,Y,)=(%(X),y,(X)).
s=0,1,--- be the points of break of & for the space
X.

Corollary 1 Let X =H>" or X =A>".If
X, <02 <X,, with s>0 or r>0 then the error of
optimal recovery is given by (13) and (14) is an optimal
method. If s=0 and r=0 then E(W,K,5)=1 and
m(y)=0 isoptimal.

Proof. For the spaces X =.A*" or H>", y, =0 if
and only if s=0 and r=0. Thus y, >0 if and only
if s>0 or r>0. Thus apply Theorem 3 to obtain the
result for all spaces except A>’. The dual problem in
the case X =.A*° leads to a simple Lagrange function.
The dual problem is specifically

2
< [a]
Z_——)ma
i J+1

Therefore the Lagrange function is simply given by

L) -5

1:0(j+1)
Now if we let 2;:1 and 22:0 then
c(%,@):o for any f e X . So now proceed as in

(A4 (J+1)+4,—(j+1)).

Theorem 3. As any f € A*® will minimize £, choose
f as in (18). The extremal problem (19) is solved
similarly, and as /@ =0 then a; =0 for j=0,1,--

O

It should be noted that the optimal method described is
stable with respect to the inaccurate information data.

We now apply Theorem 4 to the Hardy-Sobolev
spaces H*" and Bergman-Sobolev spaces A>" in
which s, is explicitly defined to be the smallest non-
negative integer satisfying
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1 1
>
N+ y (s+2) =7 (s+1)

For the case W =A™, y,(j+1)=1 for all j=0.
Thus s, =0 does not depend on N . So

%, (A*)=x
in the case & > X, -

Corollary 2 Let X =H> or X=A. Suppose
X, <02 <X, with s<s,.If s>0 or r>0 thenlet
A,,4, be given by (12) and the optimal error is given by
(13) and (23) is an optimal method. If s=0 and r=0
then E(W,KN,(S):l and Mm(y)=0 is an optimal
method.

Otherwise suppose &7 >X;, - 1f sy>0 or r>0
then the optimal error is given by (13) and (23) is an

optimal method with 4, = (7, (N +1)) and

A=Y, —% A If ;=0 and r=0 then

EW,K",5)=1 and m(y)=0 isan optimal method.
Proof. As previously stated, if X =.4*° the only

break point of € 1s (0,0) and furthermore as

7 (.AZO) (j+1)" then I, given by (21) does not

exist so we treat this special case. In this case, the dual

extremal problem is

(AQ‘O):O and hence for any & we are

2
» |a.
I me, SBLc0 SR

JO(J+1)

and the corresponding Lagrange function is simply

£U%Jﬁ=i|1 (A1) ~(i 1))

If 4, =1 and 4,=0 then £(f,1,0)=0 forany
f € A*" . Now proceed as in the proof of Theorem 4 to

obtain the result. O

We now apply Theorem 5 to the spaces X =H>" or
X =A*" for 0<r<N-I.In this situation y;(j+1)
will be a non-decreasing sequence for all j>0. Also,
for any r>0 we have y,=0 and we are always in
the case 7,0, <1. For r=0 then for both the Hardy
and Bergman spaces y,=1 and so the condition
7,0, <1 will be satisfied if we know ¥, satisfying

la, = 9| =K, f = 9| < 6, <1.

Corollary 3Let X =H>" or X =A>" with
Isr<N-1or r=0 and ¢,<1 and p, given by
(27). Let /1,/1 j=0,---,N—1 be given by (28). Then
the error of optlmal recovery is given by (29) and (38) is
an optimal method. If r=0 and &, >1 then
E(W,KN,E):I and m(§)=0 isan optimal method.

Proof. For Theorem 5 we simply used conditions (6)
and (20), both of which are satisfied by H>" and A>"
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forall 0<r<N-1.0O

As a direct consequence of Theorem 5, we consider
the situation in which we have a uniform bound on the
inaccuracy of each of the first N terms of K;f . That
is we take 5, =& forevery 0<r<N-1.If &%, <1
we define p, similarly as

p
Po =max{p20:522;/j (j+1)2 <1, p<N —1}
j=0
and the apriori information is given by the values
y()s yl 5" s YN—I such that
K, f-g|<s.

Again we will only need the values §,,---,¥, for an
optimal method.

As previously noted, since the optimal method and
error of optimal recovery only use up to the p, term
then any information beyond may be disregarded if
P, <N -1 as additional information will not decrease
the error of optimal recovery.

Po
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