МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

ФАКУЛЬТЕТ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ЕСТЕСТВЕННЫХ НАУК

На правах рукописи

Баграмян Тигран Эммануилович

Восстановление функций по неточно заданному преобразованию Радона и неравенства для норм некоторых операторов

01.01.01 – Вещественный, комплексный и функциональный анализ

Диссертация на соискание ученой степени кандидата физико-математических наук

Научные руководители: доктор физико-математических наук, профессор Арутюнов Арам Владимирович, доктор физико-математических наук, профессор Осипенко Константин Юрьевич

Москва 2013

Оглавление

		стр.
Вве	едение	4
0.1.	Предварительные сведения	10
Глан	ва 1. Оптимальное восстановление гармонической функции по неточно	
	заданным значениям оператора радиального интегрирования	21
1.1.	Восстановление функций из пространства Харди h_2 по	
	информации о значении оператора радиального интегрирования,	
	заданной неточно в среднеквадратичной метрике	21
1.2.	Восстановление функций из пространства Харди h_2 по	
	информации о значении оператора радиального интегрирования,	
	заданной в виде конечного набора коэффициентов Фурье,	
	вычисленных с погрешностью в среднеквадратичной метрике	30
1.3.	Восстановление функций из пространства Харди h_2 по	
	информации о значении оператора радиального интегрирования,	
	заданной в виде конечного набора коэффициентов Фурье,	
	вычисленных с погрешностью в равномерной метрике	36
Глан	ва 2. Оптимальное восстановление функции по ее неточно заданному	
	преобразованию Радона	43
2.1.	Оптимальное восстановление функций из пространства Харди h_2	
	по неточно заданному преобразованию Радона	43
2.2.	Оптимальное восстановление функций из $L_2(\mathbb{R}^d)$ по неточно	
	заданному преобразованию Радона	53
2.3.	Оптимальное восстановление функций на сфере по неточно	
	заданному преобразованию Минковского-Функа	60

Глава	3.	Оптимальное	восстановление	производной	функции	И	одно		
неравенство для производных на отрезке									
Список использованных источников								80	

Введение

Диссертация посвящена применению теории оптимального восстановления к ряду задач, возникающих в компьютерной томографии, также изучению неравенств для производных. Различные задачи восстановления функций, функционалов и операторов на некоторых множествах (классах) по неточной или неполной информации об элементах этих множеств исследуются в рамках теории оптимального восстановления современного раздела теории приближений. Задача оптимального восстановления берет свое начало от работ А.Н. Колмогорова [1], где рассматриваются наилучшие (на всем классе) методы приближений. Развитие численных методов привлекло внимание к проблеме численного Различные интегрирования. квадратурные формулы представляют методы восстановления интеграла $\int_a^b f(x)dx$ по информации, собой являющейся значениями функции f(x) в точках $\{x_i\}_{i=1}^n$ интервала [a,b]. Их точность напрямую зависит от рассматриваемого класса функций. Интеграл является примером линейного функционала, поэтому задача о квадратурных формулах получила естественное обобщение на общий случай линейного функционала в векторном пространстве. Важные результаты в этом направлении были получены в работах A. Sard [2], приближение интеграла рассматривается линейными методами обсуждается обобщение результатов на произвольный линейный функционал, и С.М. Никольского [3], где указывается оптимальный выбор точек, в которых необходимо вычислить значения подынтегральной функции. Точная постановка задачи оптимального восстановления впервые появилась в кандидатской диссертации С.А. Смоляка [4], в которой показано, что среди всех оптимальных методов восстановления действительнозначного линейного функционала по информации, являющейся значениями конечного числа других линейных функционалов, всегда имеется линейный метод

(аналогичное утверждение для комплекснозначных функционалов получено в работе К. Ю. Осипенко [5]). В работе Н.С. Бахвалова [6] рассмотрена задача восстановления линейного оператора на выпуклом центральносимметричном классе по информации, являющейся значениями конечного числа линейных функционалов в случае, когда погрешность оценивается в равномерной метрике, и показано существование линейного метода. Во всех описаных задачах считается, что используемая информация известна точно. В статье А. Г. Марчука и К. Ю. Осипенко [7] решена задача приближения линейного функционала на выпуклом центрально-симметричном классе функций по значениям n линейных функционалов, известным с погрешностью. Множество результатов в теории оптимального восстановления приведены в обзорах С. А. Michelli и Т. J. Rivlin [8,9]. В них разработана терминология, рамках которой формулируются различные задачи оптимального восстановления. В работе А. А. Melkman, С. А. Michelli [10], в которой рассматриваются линейные методы восстановления линейных операторов в гильбертовом пространстве по неточно заданной информации, представлено соотношение двойственности для задачи оптимального восстановления. Позднее, в работах К. Ю. Осипенко и М. И. Стесина ([11] и др.) рассмотрена негильбертова постановка этой задачи. На современном этапе развития теории оптимального восстановления в работах Г. Г. Магарил-Ильяева и К. Ю. Осипенко ([12,13] и др.) разработан подход, основанный на общей теории экстремума. В работах [14, 15] общая теория оптимального восстановления применена к задачам восстановления решений уравнений математической физики.

В конкретных задачах восстановления в качестве информационного оператора обычно рассматривают линейные функционалы или операторы, сопоставляющие функции ее значения в точках, ее коэффициенты Фурье или просто саму функцию. В диссертации рассматривается преобразование Радона (понимаемое в широком смысле) - оператор, переводящий функцию

на многообразии в множество ее интегралов по некоторому семейству подмногообразий. Такого рода операторы применяются для моделирования различных томографических процессов и изучаются в интегральной геометрии и компьютерной томографии, которая занимается численным восстановлением функций по их линейным или плоскостным интегралам. В конкретных случаях, когда преобразование Радона известно точно, существуют формулы обращения, позволяющие произвести однозначное восстановление. Во всех рассматриваемых в данной работе задачах преобразование Радона измерено неточно, но с известной погрешностью. В теории оптимального восстановления подобные операторы рассматривались ранее в работе B.F Logan и L.A. Shepp [16], где для функции, заданной в единичном круге на плоскости, известно преобразование Радона в некотором конечном числе направлений, а также в диссертации A.J. Degraw [17, 18], где рассматриваются задачи восстановления голоморфной функции в единичном круге плоскости по неточно заданному преобразованию Радона и значениям оператора радиального интегрирования.

В работах Г.Г. Магарил-Ильяева и К.Ю. Осипенко ([19]) методами теории оптимального восстановления получены некоторые точные неравенства для производных и показано, что задача нахождения точных констант в таких неравенствах может быть сформулирована и эффективно решена как соответствующая задача оптимального восстановления. Более того, такое решение является более тонким инструментом исследования подобных неравенств. Этот подход развивается в диссертации на примере одного неравенства для производных функций на отрезке.

Цель исследования. Основными целями диссертации являются:

1) исследование оптимальных методов восстановления функций по неточно заданной томографической информации (множеству интегралов по некоторому семейству многообразий);

2) исследование оптимальных методов восстановления производной функции и связанная с этим задача нахождения точных констант в неравенствах для производных.

Задачи исследования. В диссертации рассматриваются следующие задачи:

1) исследование оптимальных на классе гармонических функций в единичном шаре d-мерного пространства методов восстановления по неточно заданным значениям оператора радиального интегрирования

$$Kf = \int_0^1 f(r\zeta)dr, \quad \zeta \in \mathbb{S}^{d-1};$$

- 2) исследование оптимальных на классе гармонических функций в единичном шаре d-мерного пространства методов восстановления по неточно заданному преобразованию Радона (интегрирование по пересечениям гиперплоскостей и шара);
- 3) исследование оптимальных на пространстве $L_2(\mathbb{R}^d)$ методов восстановления по неточно заданному преобразованию Радона (в классическом смысле интегрирование по гиперплоскостям)

$$Rf(\theta, s) = \int_{x\theta=s} f(x)dx, \quad \theta \in \mathbb{S}^{d-1}, \quad s \in \mathbb{R};$$

4) исследование оптимальных на классе функций на сфере \mathbb{S}^{d-1} , у которых ограничена L_2 -норма степени сферического Лапласиана $(-\Delta_S)^{\alpha/2}$, методов восстановления по неточно заданному преобразованию Минковского-Функа (интегрирование по "большим кругам")

$$Mf(\xi) = \int_{x\xi=0} f(x)dx, \quad x \in \mathbb{S}^{d-1}, \quad \xi \in \mathbb{S}^{d-1};$$

5) нахождение точной константы в одном неравенстве для производных функций на отрезке путем исследования соответствующей задачи восстановления.

Методика исследования. Для решения поставленных задач использовались методы теории экстремальных задач, функционального анализа, теории функций вещественной переменной, теории представлений, интегральной геометрии.

Научная новизна. Все полученные результаты являются новыми. Среди них можно выделить следующие наиболее важные:

- 1) Для пространства Харди h_2 гармонических функций в единичном шаре d-мерного пространства найдено семейство оптимальных методов восстановления и соответствующая им погрешность восстановления по неточно заданным значениям оператора радиального интегрирования;
- 2) Для пространства Харди h_2 гармонических функций в единичном шаре d-мерного пространства найдено семейство оптимальных методов восстановления и соответствующая им погрешность восстановления по неточно заданному преобразованию Радона;
- 3) Для класса функций из пространства $L_2(\mathbb{R}^d)$, имеющих ограниченную L_2 -норму степени оператора Лапласа $(-\Delta)^{\alpha/2}$ найдено семейство оптимальных методов восстановления и соответствующая им погрешность восстановления по неточно заданному преобразованию Радона. В качестве следствия приведено одно неравенство для норм преобразования Радона и степени оператора Лапласа;
- 4) Найдено семейство оптимальных методов и погрешность оптимального восстановления на классе функций на сфере \mathbb{S}^{d-1} , у которых ограничена L_2 -норма степени оператора Лапласа-Бельтрами $(-\Delta_S)^{\alpha/2}$, по неточно заданному преобразованию Минковского-Функа;

5) Для рассматриваемого неравенства для функций на отрезке найдена точная константа. Более того, для некоторых подмножеств рассматриваемого класса функций показано, что константа может быть уменьшена. Приведены явные описания этих подмножеств и точные константы на них.

Теоретическая и практическая значимость. В диссертации показано, что конкретные задачи компьютерной томографии, а также задача нахождения точных констант в неравенствах для производных, могут быть эффективно исследованы в рамках теории оптимального восстановления. Указаны соответствующие методы исследования подобных задач. Приведен пример численного восстановления функции в задаче восстановления по неточно заданным значениям оператора радиального интегрирования. Аналогично, другие полученные результаты могут представлять интерес для решения прикладных задач компьютерной томографии.

Апробация работы. Результаты диссертации докладывались и обсуждались на следующих семинарах и конференциях:

- 1) Всероссийская научная конференция "Математическое моделирование развивающейся экономики и экологии. ЭКОМОД"2009;
- 2) Международная конференция, посвященная памяти Г.В. Дорофеева "Традиции гуманизации и гуманитаризации математического образования"2010;
- 3) Научный семинар "Вопросы оптимального восстановления линейных операторов" (рук. проф. Г.Г. Магарил-Ильяев, проф. К.Ю. Осипенко, проф. В.М. Тихомиров), 2011;
- 4) Научный семинар "Квазилинейные уравнения и обратные задачи"МФТИ, Ecole Polytechnique, Paris VI (рук. проф. А.А. Шананин, проф. Р.Г. Новиков, проф. Г.М. Хенкин), 2012;
- 5) Научная конференция МГУ "Ломоносовские чтения"2012;
- 6) Научный семинар "Дифференциальные и функционально-

дифференциальные уравнения "РУДН (рук. проф. Скубачевский А.Л.), 2013

и отражены в шести публикациях [20-25].

0.1. Предварительные сведения

Пространство Шварца $S(\mathbb{R}^d)$ состоит из гладких функций, вместе со своими производными убывающих на бесконечности быстрее любой степени |x|,

$$\sup_{x \in \mathbb{R}^d} \left| x^{\alpha} D^{\beta} f(x) \right| < \infty, \quad \forall \alpha, \beta \in \mathbb{Z}_+^d.$$

Если $f \in L_1(\mathbb{R}^d)$, то преобразование Фурье \widehat{f} и обратное преобразование Фурье \widetilde{f} задаются формулами

$$\widehat{f}(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-ix\xi} f(x) dx,$$

$$\tilde{f}(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{ix\xi} f(x) dx.$$

Формула обращения для преобразования Фурье имеет вид

$$\hat{\hat{f}} = \hat{\hat{f}} = f, \quad f \in S(\mathbb{R}^d).$$

Преобразованием Радона называется интегральный оператор

$$Rf(\theta, s) = \int_{x\theta=s} f(x)dx, \quad \theta \in \mathbb{S}^{d-1}, \quad s \in \mathbb{R}.$$
 (1)

Функция Rf определена на единичном цилиндре $Z=\mathbb{S}^{d-1}\times\mathbb{R}$. Гильбертово пространство $L_2(Z)$ задается скалярным произведением

$$(g,h)_{L_2(Z)} = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} g(\theta,s) \overline{h}(\theta,s) ds d\theta.$$

Известно следующее соотношение, связывающее преобразование Радона

функции и ее преобразование Фурье (проекционная теорема [26]) **Лемма 1** Для функции $f \in S(\mathbb{R}^d)$ верно

$$\widehat{(R_{\theta}f)}(\sigma) = (2\pi)^{(d-1)/2}\widehat{f}(\sigma\theta), \quad \sigma \in \mathbb{R}^1, \quad \theta \in \mathbb{S}^{d-1},$$

 $r\partial e \ R_{\theta}f(s) = Rf(\theta, s).$

Доказательство.

$$\widehat{(R_{\theta}f)}(\sigma) = (2\pi)^{-1/2} \int_{\mathbb{R}^1} e^{-i\sigma s} R_{\theta}f(s)ds = (2\pi)^{-1/2} \int_{\mathbb{R}^1} e^{-i\sigma s} \int_{\theta^{\perp}} f(s\theta + y)dyds.$$

Выполним замену $x=s\theta+y$ и получим $s=\theta x,\, dx=dyds,$ следовательно

$$\widehat{(R_{\theta}f)}(\sigma) = (2\pi)^{-1/2} \int_{\mathbb{R}^d} e^{-i\sigma\theta x} f(x) dx = (2\pi)^{(d-1)/2} \widehat{f}(\sigma\theta).$$

Если $g \in L_2(\mathbb{R}^d)$, то по теореме Планшереля

$$(g,\widehat{f})_{L_2(\mathbb{R}^d)} = (\widehat{g},f)_{L_2(\mathbb{R}^d)}, \quad f \in L_1(\mathbb{R}^d),$$

где \widehat{g} - некоторая функция из $L_2(\mathbb{R}^d)$, которая называется преобразованием Фурье функции g. Можно показать, что

$$\widehat{g}(\xi) = (2\pi)^{-d/2} \lim_{r \to \infty} \int_{|x| < r} e^{-ix\xi} g(x) dx,$$

где предел понимается в смысле сходимости в $L_2(\mathbb{R}^d)$. Также выполнено $(f,g)_{L_2(\mathbb{R}^d)}=(\widehat{f},\widehat{g})_{L_2(\mathbb{R}^d)}$, т.е. преобразование Фурье на $L_2(\mathbb{R}^d)$ представляет собой изометрию.

Чтобы определить преобразование Радона на $L_2(\mathbb{R}^d)$ потребуется следующий частный случай теоремы Фубини

Лемма 2 Пусть (X, Θ, μ) и (Y, Ω, λ) два полных пространства с σ -конечными мерами. Обозначим $\nu = \mu \times \lambda$ полную σ - конечную меру на

минимальной σ - алгебре $S=\Theta\times\Omega$. Если f(x,y)-S-измеримая функция на $X\times Y$, то $\forall x\in X$ функция

$$f(x,\cdot)$$
— Ω -измерима на Y .

Для функции f, измеримой на $\mathbb{R}^d = \mathbb{R}^{d-1} \times \mathbb{R}$ по лемме 2 получаем, что $\forall x_n$ функция $f(\cdot, x_n)$ — измерима на \mathbb{R}^{d-1} . Таким образом ограничения f на гиперплоскости с нормальным вектором $\theta = (0, \dots, 0, 1)$ являются измеримыми функциями. Для произвольного θ существует собственное ортогональное преобразование, переводящее его в $(0, \dots, 0, 1)$, поэтому в силу инвариантности меры Лебега, ограничение f на любую гиперплоскость будет измеримо. Тогда, чтобы определить преобразование Радона, достаточно потребовать сходимости интеграла в формуле (1). Пусть $f \in L_2(\mathbb{R}^d)$, тогда Rf определено почти всюду на Z. Это следует из того, что для функции, отличающейся от нуля на множестве меры ноль, мера множества пар (θ, s) где $Rf(\theta, s) \neq 0$, равна нулю.

Нормализованными полиномами Гегенбауэра C_l^{λ} , $\lambda > -\frac{1}{2}$, степени l называютя полиномы, ортогональные на отрезке [-1,1] с весовой функцией $(1-x^2)^{\lambda-1/2}$ и удовлетворяющие условию $C_l^{\lambda}(1)=1$. Для них (см. [27])

$$\int_{-1}^{1} (1 - x^2)^{\lambda - 1/2} C_l^{\lambda}(x) C_k^{\lambda}(x) dx = \begin{cases} 0, & l \neq k, \\ \frac{2^{2\lambda - 1} (\Gamma(\lambda + \frac{1}{2}))^2 l!}{(l + \lambda) \Gamma(l + 2\lambda)}, & l = k, \end{cases}$$

где Γ — гамма-функция. Если $\lambda=0$, то нужно перейти к пределу. В этом случае полиномы Гегенбауэра представляют собой полиномы Чебышева первого рода

$$T_l(x) = C_l^0(x) = \cos(l\arccos x), \quad |x| \le 1,$$

а при $\lambda=1$ — полиномы Чебышева второго рода

$$U_l(x) = (l+1)C_l^1(x) = \frac{\sin((l+1)\arccos x)}{\sin(\arccos x)}, \quad |x| \le 1.$$

При $\lambda = \frac{1}{2}$ полиномы Гегенбауэра являются полиномами Лежандра $P_l = C_l^{1/2}$. Полиномы Гегенбауэра являются частным случаем полиномов Якоби $P_l^{(\alpha,\beta)}$, $\alpha > -1$, $\beta > -1$, ортогональных на отрезке [-1,1] с весом $(1-t)^{\alpha}(1+t)^{\beta}$, для которых $P_l^{(\alpha,\beta)}(1) = \frac{(l+\alpha)!}{l!\alpha!}$. А именно, $C_l^{\lambda} = \frac{l!(\lambda-1/2)!}{(l+\lambda-1/2)!}P_l^{(\lambda-1/2,\lambda-1/2)}$.

Рассмотрим множество сферических гармоник — ограничений однородных гармонических полиномов на сферу S^{d-1} . Сферические гармоники разных степеней ортогональны между собой в $L_2(S^{d-1})$. Существует N(l) линейно независимых сферических гармоник степени l, где

$$N(l) = \frac{(2l+d-2)(d+l-3)!}{l!(d-2)!}, \quad l \ge 1,$$
$$N(0) = 1.$$

Обозначим через Y_k^l , $k=1,\ldots,N(l,d)$ элементы ортонормированного базиса пространства сферических гармоник степени l. Важную роль при рассмотрении сферических гармоник играет теорема Функа-Хекке ([28])

Лемма 3 Для функции f, интегрируемой на отрезке [-1,1],

$$\int_{\mathbb{S}^{d-1}} f(\theta\omega) Y_k^l(\omega) d\omega = c(d, l) Y_k^l(\theta),$$

$$c(d,l) = |\mathbb{S}^{d-2}| \int_{-1}^{1} f(t) C_l^{(d-2)/2}(t) (1-t^2)^{(d-3)/2} dt,$$

где $|\mathbb{S}^{d-2}|=rac{2\pi^{(d-1)/2}}{\Gamma(rac{d-1}{2})}$ - площадь поверхности сферы $\mathbb{S}^{d-2}.$

Пространство h_2 состоит из гармонических в шаре $\mathbb{B}^d=\{x\in\mathbb{R}^d:|x|<1\},\;d\geq 2,\;$ функций, для которых конечна

норма

$$||f||_{h_2} = \sup_{0 \le r < 1} ||f(r \cdot)||_{L_2(\mathbb{S}^{d-1})},$$
$$\mathbb{S}^{d-1} = \{ x \in \mathbb{R}^d \colon |x| = 1 \}.$$

Следуя [29], будем называть h_2 пространством Харди гармонических функций. Известно представление функций из h_2 в виде разложения в ряд по ортонормированной системе сферических гармоник:

$$f(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l,d)} f_{kl} |x|^l Y_k^l \left(\frac{x}{|x|}\right).$$
 (2)

Через Bh_2 обозначим класс функций $f \in h_2$, таких что $||f||_{h_2} \le 1$.

Функциии Бесселя J_v первого рода вещественного порядка v можно получить как фурье-образы полиномов Гегенбауэра. Точнее, при $\sigma>0$

$$\widehat{(\omega C_m^{\lambda})}(\sigma) = \frac{\Gamma(2\lambda)}{\Gamma(\lambda)} (2\pi)^{1/2} 2^{-\lambda} i^{-m} \sigma^{-\lambda} J_{m+\lambda}(\sigma), \tag{3}$$

где $\omega(x)=(1-x^2)^{\lambda-1/2}$ (формула 7.321 из [30], поделенная на $\frac{\Gamma(2\lambda+l)}{l!\Gamma(2\lambda)}$ с учетом нормализации полиномов Гегенбауэра). В случае $\lambda=0$ необходимо перейти к пределу.

Другой подход к определению сферических гармоник заключается в рассмотрении представления специальной ортогональной группы SO(d) в пространстве $L_2(\mathbb{S}^{d-1})$ ([31–33]).

Линейным представлением (или просто представлением) абстрактной группы G называется ее гомоморфизм в группу обратимых линейных операторов произвольного линейного пространства V. Т.е. каждому элементу $g \in G$ ставится в соответствие линейный оператор T_g , действующий в пространстве V, причем

1.
$$T_{g_1g_2} = T_{g_1}T_{g_2}$$
,

2.
$$T_e = I$$
,

где I - тождественный оператор в V. Размерность пространства, в котором действует представление, называется также размерностью этого представления. Далее все представления предполагаются конечномерными. Подпространство $V_0 \subset V$ называется инвариантным, если $T_gV_0 \subset V_0$ или (в виду обратимости T_g) $T_gV_0 = V_0$ для всех $g \in G$. Представление называется неприводимым, если инвариантны только (0) и V. Условимся рассматривать линейные (конечномерные) пространства над полем комплексных чисел. Сформулируем и докажем один вариант леммы Шура.

Лемма 4 *Если* линейный оператор A перестановочен со всеми операторами неприводимого представления T_g , то он кратен единичному. **Доказательство.** Ясно, что KerA и ImA инвариантны в V. Если $A \neq 0$, то равенства KerA = V и ImA = 0 исключаются. Следовательно,

$$Ker A = 0$$
, $Im A = V$,

в силу неприводимости T. Рассмотрим оператор $\lambda I - A$, где λ - корень уравнения $det(\lambda I - A) = 0$. Он также перестановочен со всеми операторами T_g , но вырожден, поэтому $A = \lambda I$.

Путь дано множество X, в котором действует группа G как группа преобразований. Результат преобразования точки $x \in X$ элементом $g \in G$ обозначим символом xg. Таким образом, имеем

- 1. $xg_1g_2 = (xg_1)g_2$,
- 2. xe = x.

Дополнительно, наложим еще одно условие:

3. $\forall x, y \in X$, $\exists g \in G : y = xg$.

Если выполняется последнее условие, то говорят, что X является однородным пространством с группой движений G. Пусть L - линейное пространство, составленное из функций на множестве X. Допустим, что L

вместе с каждой функцией f(x) содержит также функцию

$$f_g(x) = f(xg)$$

при любом значении $g \in G$. Тогда преобразования точек в пространстве X порождают семейство линейных преобразований

$$T_q f = f_q$$

в линейном пространстве L. Как следует из построения, операторная функция T_g обладает мультипликативным свойством $T_{g_1g_2}=T_{g_1}T_{g_2}$, т.е. отображение $g\to T_g$ является гомоморфизмом группы G.

Рассмотрим пространство $L_2(\mathbb{S}^{d-1})$. Группа SO(d) состоит из унитарных матриц с единичным определителем, действия которых переводят это пространство в себя. Таким образом возникает унитарное представление T группы SO(d) в $L_2(\mathbb{S}^{d-1})$. Пусть P_n - пространство всех функций на \mathbb{S}^{d-1} , которые являются ограничениями на \mathbb{S}^{d-1} всевозможных однородных полиномов степени n в \mathbb{R}^d . Пусть H_n означает ортогональное дополнение к P_{n-2} в P_n . Можно показать, что H_n является пространством сферических гармоник степени n и верно следующее утверждение (см. [33])

Лемма 5 Разложение пространства $L_2(\mathbb{S}^{d-1})$ на неприводимые (относительно группы SO(d)) подпространства имеет вид

$$L_2(\mathbb{S}^{d-1}) = \sum_{n=0}^{\infty} H_n.$$

Доказательство. Прежде всего ясно, что H_n - инвариантные подпространства и что алгебраическая сумма этих пространств совпадает с объединением пространств P_n . По теореме Стоуна-Вейерштрасса последнее пространство плотно в $C(\mathbb{S}^{d-1})$ и, следовательно, в $L_2(\mathbb{S}^{d-1})$. Остается проверить неприводимость H_n . Она следует из того, что в любом

конечномерном инвариантном подпространстве существует хотя бы одна функция, инвариантная относительно действия подгруппы, сохраняющей фиксированную точку, а в H_n такая функция единственная. Тогда, если $V' \subset H_n$ - инвариантное подпространство, то его ортогональное дополнение V'^{\perp} также инвариантно, однако указанная функция может содержаться лишь в одном из подпространств, откуда следует, что одно из них (0), а другое совпадает с H_n и последнее неприводимо.

Докажем необходимые утверждения. Пусть V - конечномерное подпространство размерности n, инвариантное относительно действия SO(d) и (f_1,\ldots,f_n) - его ортонормированный базис. Тогда

$$T_g f_i = \sum_{j=1}^n A_{ij} f_j$$

и матрица $A = (A_{ij})$ является унитарной, т.к.

$$\sum_{j=1}^{n} A_{ij} A_{i'j} = \langle T_g f_i, T_g f_{i'} \rangle = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

в силу инвариантности скалярного произведения. Положим

$$F = \begin{pmatrix} f_1 \\ \dots \\ f_n \end{pmatrix}$$

и рассмотрим функцию $Z(x,z)=F^t(x)F(z)$, где $x,z\in\mathbb{S}^{d-1}$. Она инвариантна относительно SO(d), т.к. $\forall g\in SO(d)$

$$Z(xg, zg) = F^{t}(xg)F(zg) = (T_{g}F(x))^{t}T_{g}F(z) = F^{t}(x)A^{t}AF(z) = Z(x, z).$$

Тогда функция $f_z(x) = Z(x,z)$ принадлежит V и $\forall g \in SO(d)$ такого что

$$zg = z$$
 следует $T_g f_z = Z(xg, z) = Z(xg, zg) = Z(x, z) = f_z$.

Покажем, что в H_n такая функция единственна, с точность до константы. Пусть p - однородный полином степени n, инвариантный относительно стационарной подгруппы в SO(d), сохраняющей вектор $z \in \mathbb{S}^{d-1}$. Обозначим $x = r\omega, \quad r \geq 0, \omega \in \mathbb{S}^{d-1}$. Если $y \in \mathbb{S}^{d-1}$ и $<\omega, z>=< y, z>$, то существует преобразование $g \in SO(d)$, сохраняющее z и переводящее ω в y. Отсюда $p(y) = p(\omega g) = p(\omega)$. Рассмотрим функцию $q: [-1,1] \to \mathbb{R}$, определенную по формуле $q(<\omega, z>) = p(\omega)$. Тогда q - полином степени n. В силу однородности p, имеем

$$p(x) = r^n p(\omega) = r^n q(\langle \omega, z \rangle) = r^n \sum_{i=0}^n c_i \langle \omega, z \rangle^{n-i} = \sum_{i=0}^n c_i r^i \langle x, z \rangle^{n-i}.$$

Заметим, что $c_i=0$ для нечетных i, т.к. в этом случае r^i не является полиномом от x. Таким образом, в P_n имеется [n/2]+1 линейно независимых функций, инвариантных относительно вращений, сохраняющих z, а именно

$$< x, z >^n, < x, z >^{n-2}, \dots, < x, z >^{n-2[n/2]}$$
.

Соответственно, в P_{n-2} таких функций [n/2], откуда следует, что в H_n она одна.

Преобразованием Минковского-Функа называется интегральное преобразование, переводящее функцию во множество ее интегралов по всевозможным большим кругам на сфере. Каждый большой круг на \mathbb{S}^2 получается как пересечение этой сферы с плоскостью, проходящей через 0:

$$<\xi, x> = 0, \quad |\xi| = 1.$$

Этим же равенством определим семейство подмногообразий сферы \mathbb{S}^{d-1} , параметризованное точками единичной сферы $\xi \in \mathbb{S}^{d-1}$. Заметим, что

диаметрально противоположным точкам отвечает одно и то же многообразие. Соответствующее интегральное преобразование будем, по аналогии, называть преобразованием Минковского-Функа. Из равенства

$$T_g M f(\xi) = \int_{\langle \xi g, x \rangle = 0} f(x) dx = \int_{\langle \xi, xg^{-1} \rangle = 0} f(x) dx$$
$$= \int_{\langle \xi, y \rangle = 0} f(yg) dy = M T_g f(\xi)$$

следует, что оператор Минковского-Функа перестановочен с вращениями сферы. Отсюда, по лемме Шура,

$$Mf = m_n f, \quad \forall f \in H_n.$$
 (4)

Для вычисления m_n рассмотрим полином Гегенбауэра $C_n^{\frac{d-2}{2}}(t)$ и функцию $L_n \in P_n$, заданную формулой $L_n(x) = C_n^{\frac{d-2}{2}}t(\omega x), \, \omega = (0,\dots,0,1).$ Покажем, что L_n лежит в H_n . Пусть p(x) - полином степени m < n. После перехода к сферическим координатам

$$x_1 = r \sin \theta_{d-1} \dots \sin \theta_3 \sin \theta_2 \sin \theta_1,$$

$$x_2 = r \sin \theta_{d-1} \dots \sin \theta_3 \sin \theta_2 \cos \theta_1,$$

$$x_3 = r \sin \theta_{d-1} \dots \sin \theta_3 \cos \theta_2,$$

$$\dots$$

$$x_{d-1} = r \sin \theta_{d-1} \cos \theta_{d-2},$$

$$x_d = r \cos \theta_{d-1},$$

имеем

$$\int_{\mathbb{S}^{d-1}} L_n(x) \overline{p(x)} dx = \int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} L_n(\cos \theta_{d-1}) \overline{p(x)} (\sin \theta_{d-1})^{d-2} \dots$$
$$\dots (\sin \theta_3)^2 \sin \theta_2 d\theta_1 \dots d\theta_{d-1} =$$

$$\int_0^{\pi} \dots \int_0^{\pi} (\sin \theta_{d-2})^{d-3} \dots \sin \theta_2 \int_{-1}^1 L_n(t) \overline{p(x)} (1-t^2)^{\frac{d-3}{2}} dt d\theta_1 \dots d\theta_{d-2} = 0.$$

где мы сделали замену $t=\cos\theta_{d-1}$ и воспользовались соотношением ортогональности для полиномов Гегенбауэра. Тогда, подставив L_n в (4) в точке $(0,\ldots,0,1)$, получим $|\mathbb{S}^{d-2}|C_n^{\frac{d-2}{2}}(0)=m_nC_n^{\frac{d-2}{2}}(1)$, откуда

$$m_n = |\mathbb{S}^{d-2}| C_n^{\frac{d-2}{2}}(0).$$

Воспользовавшись формулой 22.4.2 (с учетом нормализации) из [27], запишем в явном виде (см. [34])

$$m_n = \begin{cases} 0, & \text{если } n \text{ нечетно} \\ (-1)^{n/2} 2\pi^{(d-2)/2} \frac{\Gamma((n+1)/2)}{\Gamma((n+d-1)/2)}, & \text{если } n \text{ четное.} \end{cases}$$
 (5)

Глава 1

Оптимальное восстановление гармонической функции по неточно заданным значениям оператора радиального интегрирования

В рассматривается главе задача оптимального восстановления единичном шаре функции гармонической в ПО неточно заданным значениям оператора радиального интегрирования. Информация о значении оператора задается в виде функции, отличающейся от точного значения в среднеквадратичной метрике не более чем на фиксированную величину погрешности, либо в виде конечного набора коэффициентов Фурье, вычисленных с фиксированной погрешностью в среднеквадратичной или равномерной метрике.

1.1. Восстановление функций из пространства Харди h₂ по информации о значении оператора радиального интегрирования, заданной неточно в среднеквадратичной метрике

Рассмотрим оператор радиального интегрирования K, определенный равенством

$$Kf(\zeta) = \int_0^1 f(r\zeta)dr, \quad \zeta \in \mathbb{S}^{d-1}.$$
 (1.1)

Предположим, что для любой функции $f \in Bh_2$ значение Kf известно с некоторой погрешностью. Т.е. дана функция $g \in L_2(\mathbb{S}^{d-1})$, такая что

$$||Kf - g||_{L_2(\mathbb{S}^{d-1})} \le \delta.$$

Зная функцию g, мы хотим наилучшим образом восстановить функцию f. Воспользуемся тем, что h_2 непрерывно вложено в $L_2(\mathbb{B}^d)$ и будем искать приближение в этом пространстве. Рассмотрим всевозможные методы

восстановления — произвольные отображения $m\colon L_2(\mathbb{S}^{d-1})\to L_2(\mathbb{B}^d)$. Для каждого m определим величину, называемую погрешностью метода

$$e(Bh_2, K, \delta, m) = \sup_{\substack{f \in Bh_2, \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|m(g) - f\|_{L_2(\mathbb{B}^d)}.$$

Оптимальным назовем метод, который имеет наименьшую погрешность, т.е. тот, на котором достигается погрешность оптимального восстановления

$$E(Bh_2, K, \delta) = \inf_{m: L_2(\mathbb{S}^{d-1}) \to L_2(\mathbb{B}^d)} e(Bh_2, K, \delta, m).$$
 (1.2)

Теорема 1 Положим

$$(x_0, y_0) = (0, 0),$$

 $(x_i, y_i) = \left(i^2, \frac{i^2}{2i + d - 2}\right), \quad i = 1, 2 \dots,$ (1.3)

$$\widehat{\lambda}_1 = \frac{y_{s+1} - y_s}{x_{s+1} - x_s}, \quad \widehat{\lambda}_2 = \frac{y_s x_{s+1} - y_{s+1} x_s}{x_{s+1} - x_s},$$
(1.4)

где число $s \geq 0$ таково, что $x_s < \delta^{-2} \leq x_{s+1}$. Тогда погрешность оптимального восстановления равна

$$E(Bh_2, K, \delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m_a(g)(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} a_{kl}(l+1)g_{kl}|x|^l Y_k^l \left(\frac{x}{|x|}\right),$$
 (1.5)

где g_{kl} — коэффициенты разложения функции g в ряд Фурье по ортонормированной системе Y_k^l

$$g_{kl} = \int_{\mathbb{S}^{d-1}} g(\zeta) Y_k^l(\zeta) d\zeta,$$

$$a_{kl} = \frac{\widehat{\lambda}_2}{\widehat{\lambda}_1(l+1)^2 + \widehat{\lambda}_2} + \epsilon_{kl} \frac{\sqrt{\widehat{\lambda}_1 \widehat{\lambda}_2}(l+1)}{\widehat{\lambda}_1(l+1)^2 + \widehat{\lambda}_2} \sqrt{\widehat{\lambda}_1(2l+d) + \widehat{\lambda}_2 \frac{2l+d}{(l+1)^2} - 1}, \quad (1.6)$$

 ϵ_{kl} — произвольные числа из отрезка [-1;1], являются оптимальными.

Доказательство. С экстремальной задачей (1.2) тесно связана двойственная к ней задача

$$||f||_{L_2(\mathbb{B}^d)} \to \max, \quad f \in Bh_2, \quad ||Kf||_{L_2(\mathbb{S}^{d-1})} \le \delta.$$
 (1.7)

Эта связь подробна изучена и описана в [35] и других работах тех же авторов. Нам же потребуется следующее утверждение

$$E(Bh_2, K, \delta) \ge \sup_{\substack{f \in Bh_2 \\ \|Kf\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|f\|_{L_2(\mathbb{B}^d)}.$$

Действительно, если функция f допустима в (1.7), то функция -f также является допустимой. Поэтому верна цепочка неравенств

$$\sup_{\substack{f \in \mathbb{B}h_2 \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|m(g) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Kf\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge$$

$$\sup_{\substack{f \in Bh_2 \\ \|Kf\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \frac{\|m(0) - f\|_{L_2(\mathbb{B}^d)} + \| - m(0) - f\|_{L_2(\mathbb{B}^d)}}{2} \ge \sup_{\substack{f \in Bh_2 \\ \|Kf\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|f\|_{L_2(\mathbb{B}^d)}.$$

Таким образом, погрешность оптимального восстановления ограничена снизу значением двойственной задачи. Решив ее, получим явное выражение для этой оценки. Из (2) следует

$$Kf(\zeta) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{f_{kl}}{l+1} Y_k^l(\zeta).$$
 (1.8)

Используя (2),(1.1),(1.8) и равенство Парсеваля, получим следующие

формулы

$$||f||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{2l+d},$$

$$||f||_{h_2}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |f_{kl}|^2,$$

$$||Kf||_{L_2(\mathbb{S}^{d-1})}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{(l+1)^2}.$$

Введем обозначение

$$b_l = \sum_{k=1}^{N(l)} |f_{kl}|^2,$$

тогда задача (1.7) может быть переписана в виде

$$\sum_{l=0}^{\infty} \frac{b_l}{2l+d} \to \max, \quad \sum_{l=0}^{\infty} b_l \le 1, \quad \sum_{l=0}^{\infty} \frac{b_l}{(l+1)^2} \le \delta^2, \quad b_l \ge 0$$
 (1.9)

(для удобства мы рассматриваем квадраты функционала и ограничений). Функция Лагранжа этой задачи имеет вид

$$L(b, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=0}^{\infty} \frac{b_l}{(l+1)^2} \left(\lambda_1 (l+1)^2 + \lambda_2 - \frac{(l+1)^2}{2l+d} \right),$$

 $b=(b_0,b_1,\dots)$. Множество точек $\{(x_i,y_i)|i\geq 0\}$, определенное в (1.3) лежит на графике функции $y=\frac{x}{2\sqrt{x}+d-2}$, которая является вогнутой при $x\geq 0$. Отсюда следует, что все это множество лежит под каждой из прямых, соединяющих соседние точки (x_i,y_i) и (x_{i+1},y_{i+1}) (рис. (1.1)). Прямая, соединяющая точки (x_s,y_s) и (x_{s+1},y_{s+1}) , имеет вид $y=\widehat{\lambda}_1x+\widehat{\lambda}_2$, где $\widehat{\lambda}_1,\widehat{\lambda}_2$ определены в (1.4). Тогда

$$y_i \le \widehat{\lambda}_1 x_i + \widehat{\lambda}_2, \quad i \ge 0.$$

Подставляя i = l + 1, получим

$$\frac{(l+1)^2}{2l+d} \le \widehat{\lambda}_1(l+1)^2 + \widehat{\lambda}_2,$$

откуда следует, что

$$L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) \ge -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$$
.

Пусть $x_s < \delta^{-2} \le x_{s+1}$, тогда определены неотрицательные числа $\widehat{b}_s = x_s \frac{\delta^2 x_{s+1} - 1}{x_{s+1} - x_s}$ и $\widehat{b}_{s+1} = x_{s+1} \frac{1 - \delta^2 x_s}{x_{s+1} - x_s}$. Положим $\widehat{b}_i = 0$, при $i \notin \{s, s+1\}$. Тогда получившийся набор \widehat{b} допустим в (1.9), удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{l=0}^{\infty} \widehat{b}_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{(l+1)^2} - \delta^2 \right) = 0$$
 (1.10)

и доставляет минимум функции Лагранжа

$$\min_{b_1 \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$
 (1.11)

В силу того, что $\widehat{\lambda}_1, \widehat{\lambda}_2 \geq 0$, верно неравенство

$$L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) \le -\sum_{l=0}^{\infty} \frac{b_l}{2l+d},$$

откуда

$$\min_{b_{l} \ge 0} L(b, \widehat{\lambda}_{1}, \widehat{\lambda}_{2}) \le \min_{\substack{b_{l} \ge 0 \\ \sum_{l=0}^{\infty} b_{l} \le 1 \\ \sum_{l=0}^{\infty} \frac{b_{l}}{(l+1)^{2}} \le \delta^{2}}} - \sum_{l=0}^{\infty} \frac{b_{l}}{2l+d}.$$

Ho, из (1.10),(1.11) следует

$$\min_{b_l \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{2l+d}.$$

Таким образом,

$$-\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{2l+d} \le \min_{\substack{b_l \ge 0 \\ \sum_{l=0}^{\infty} b_l \le 1 \\ \sum_{l=0}^{\infty} \frac{b_l}{(l+1)^2} \le \delta^2}} - \sum_{l=0}^{\infty} \frac{b_l}{2l+d},$$

что означает, что набор \hat{b} является точкой максимума в задаче (1.9). Решение этой задачи равно $\hat{\lambda}_1 + \hat{\lambda}_2 \delta^2$, а решение задачи (1.7), соответственно $\sqrt{\hat{\lambda}_1 + \hat{\lambda}_2 \delta^2}$.

Итак, мы оценили погрешность оптимального восстановления снизу

$$E(Bh_2, K, \delta) \ge \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Покажем теперь, что на самом деле в этой оценке выполнено равенство.

Рассмотрим метод m_a , определенный в (1.5). При $\widehat{\lambda}_2=0$ (эквивалентно s=0 или $\delta\geq 1$) из (1.6) следует, что a=(0) и $m_0(g)=0$. Тогда

$$\sup_{\substack{f \in Bh_2 \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|m_0(g) - f\|_{L_2(\mathbb{B}^d)}^2 \le \sup_{f \in Bh_2} \|f\|_{L_2(\mathbb{B}^d)}^2 \le \widehat{\lambda}_1.$$

При $\widehat{\lambda}_2 > 0$, используя (2) имеем

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{(a_{kl}(l+1)g_{kl} - f_{kl})^2}{2l+d} =$$

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{\left(a_{kl}(l+1)(g_{kl} - \frac{f_{kl}}{l+1}) + f_{kl}(a_{kl} - 1)\right)^2}{2l+d}.$$

Применяя неравенство Коши-Буняковского $|\langle x,y \rangle| \leq ||x|| ||y||$ к векторам $x = \left(\frac{a_{kl}(l+1)}{\sqrt{\widehat{\lambda}_2}}, \frac{a_{kl}-1}{\sqrt{\widehat{\lambda}_1}}\right), \quad y = \left(\sqrt{\widehat{\lambda}_2}(g_{kl} - \frac{f_{kl}}{l+1}), \sqrt{\widehat{\lambda}_1}f_{kl}\right),$ получим

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 \le$$

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{1}{2l+d} \left(\frac{a_{kl}^2(l+1)^2}{\widehat{\lambda}_2} + \frac{(a_{kl}-1)^2}{\widehat{\lambda}_1} \right) \left(\widehat{\lambda}_2 \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \widehat{\lambda}_1 f_{kl}^2 \right).$$

Введем обозначение

$$A_{kl} = \frac{1}{2l+d} \left(\frac{a_{kl}^2 (l+1)^2}{\widehat{\lambda}_2} + \frac{(a_{kl}-1)^2}{\widehat{\lambda}_1} \right). \tag{1.12}$$

Тогда

$$e(Bh_2, K, \delta, m_a)^2 = \sup_{\substack{f \in Bh_2 \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|m(g) - f\|_{L_2(\mathbb{B}^d)}^2 \le$$

$$\sup_{\substack{f \in Bh_2 \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} A_{kl} \left(\widehat{\lambda}_2 \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \widehat{\lambda}_1 f_{kl}^2 \right).$$

Равенства (1.6) эквивалентны неравенствам $A_{kl} \leq 1$. Откуда

$$e(Bh_2, K, \delta, m_a)^2 \le \sup_{\substack{f \in Bh_2 \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \left(\widehat{\lambda}_2 \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \widehat{\lambda}_1 f_{kl}^2 \right) \le$$

$$\widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1.$$

Таким образом, мы получили, что оценки снизу и сверху для величины $E(Bh_2,K,\delta)$ совпадают. Отсюда немедленно следует утверждение теоремы

$$\sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2} = \sup_{\substack{f \in Bh_2, \\ \|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|f\|_{L_2(B^d)} \le E(Bh_2, K, \delta) \le$$

$$e(Bh_2, K, \delta, m_a) \le \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Определенный в теореме 1 набор коэффициентов (a_{kl}) является фильтром, определяющим значение каждой гармоники в восстановлении функции f. Заметим, что при $\delta \geq 1$ погрешность оптимального

восстановления становится равной 1, а оптимальным оказывается метод $m_0(g)=0$. Покажем, что в зависимости от величины погрешности δ некоторые гармоники не нуждаются в фильтрации, а другие вовсе можно не учитывать.

Следствие 1 Пусть выполнены условия теоремы 1, тогда можно положить $a_{kl} = 0$ при $\frac{1}{2l+d} \leq \widehat{\lambda}_1$ и $a_{kl} = 1$ при $\frac{(l+1)^2}{2l+d} \leq \widehat{\lambda}_2$.

Доказательство. Подставляя $a_{kl}=0$ и $a_{kl}=1$ в (1.12), получим, что условие $A_{kl}\leq 1$ эквивалентно, соответственно, $\frac{1}{2l+d}\leq \widehat{\lambda}_1$ и $\frac{(l+1)^2}{2l+d}\leq \widehat{\lambda}_2$.

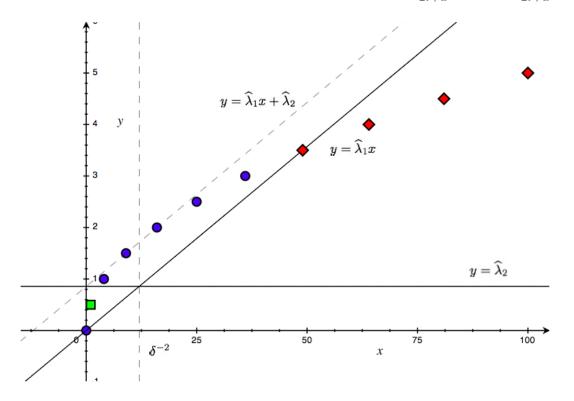


Рис. 1.1. На рисунке изображено множество точек $\{(x_l,y_l)|l\geq 0\}$, при $\delta^{-2}=12,\,d=2$. Зеленые точки соответствуют тем значениям l, для которых можно положить $a_{kl}=1,\,k=1,\ldots,N(l)$, красные - тем l, для которых $a_{kl}=0,\,k=1,\ldots,N(l)$.

Приведенное следствие означает, что, начиная с некоторой степени, все гармоники большего порядка не влияют на погрешность восстановления и коэффициенты перед ними можно взять равными нулю. Также все гармоники, степень которых не превосходит определенного значения, не нуждаются в фильтрации и их коэффициенты могут быть выбраны

равными единице. С ростом погрешности измерения δ число ненулевых коэффициентов в наборе a уменьшается, пока они все не становятся равными нулю при $\delta \geq 1$. При уменьшении погрешности измерения δ увеличивается число гармоник, не нуждающихся в фильтрации, а оптимальный метод m_a переходит в точную формулу восстановления

$$m_1(g) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} (l+1)g_{kl}|x|^l Y_k^l \left(\frac{x}{|x|}\right).$$

Сказанное проиллюстрировано на рис. (1.1). На рис. (1.2) указаны области значений фильтра a, при которых метод $m_a(g)$ является оптимальным. Видно, для каких l значение a_{kl} , $k=1,\ldots,N(l)$, может быть взято равным 1 или 0.

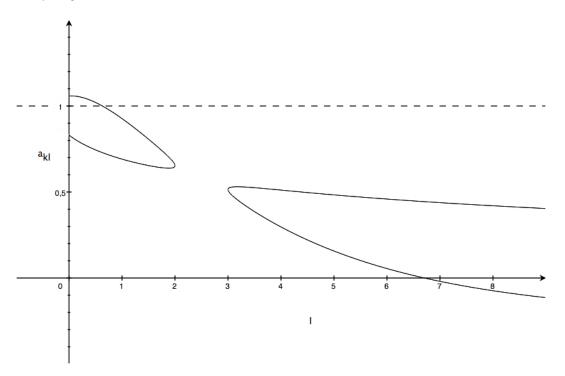


Рис. 1.2. На рисунке изображена область возможных значений фильтра $a_{kl},$ $k=1,\ldots,N(l),$ в зависимости от параметра l, при $\delta^{-2}=12,$ d=2.

1.2. функций из пространства Восстановление Харди h_2 информации \mathbf{o} значении оператора радиального интегрирования, заданной В виде конечного набора коэффициентов Фурье, вычисленных с погрешностью в среднеквадратичной метрике

Решая задачу оптимального восстановления функции f по неточно заданному значению оператора K, мы считали, что информация, которой мы владеем есть функция $g \in L_2(\mathbb{S}^{d-1})$, удовлетворяющая условию $\|Kf - g\|_{L_2(\mathbb{S}^{d-1})} \leq \delta$. В действительности, однако, мы сразу перешли от функций f и g к рассмотрению их рядов Фурье и далее работали лишь с наборами коэффициентов Фурье $\{f_{kl}\}$ и $\{g_{kl}\}$. Предположим теперь, что вместо всего множества $\{g_{kl}\}$ нам известно лишь конечное число первых его элементов. Получим следующую задачу. Пусть для каждой функции $f \in Bh_2$ нам известен набор $g \in \mathbb{R}^q$, $q = \sum_{l=0}^{N-1} N(l)$, N > 1 такой что

$$\sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{kl} - g_{kl}|^2 \le \delta^2,$$

где

$$Kf_{kl} = \int_{\mathbb{S}^{d-1}} Kf(\zeta) Y_k^l(\zeta) d\zeta.$$

В качестве методов восстановления рассмотрим отображения $m: \mathbb{R}^q \to L_2(\mathbb{B}^d)$. Определим погрешность метода

$$e(Bh_2, K, \delta, m) = \sup_{\substack{f \in Bh_2, \\ \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk} - g_{lk}|^2 \le \delta^2}} ||m(g) - f||_{L_2(B^d)}$$

и погрешность оптимального восстановления

$$E(Bh_2, K, \delta) = \inf_{m:\mathbb{R}^q \to L_2(B^d)} e(Bh_2, K, \delta, m).$$

Теорема 2 Положим

$$(x_0, y_0) = (0, 0),$$

$$(x_i, y_i) = \left(i^2, \frac{i^2}{2i + d - 2}\right), \quad i = 1, 2, \dots,$$

$$s_N = \min\left\{s \ge 0 : \frac{y_{N+1}}{x_{N+1}} \ge \frac{y_{s+1} - y_s}{x_{s+1} - x_s}\right\},$$

$$\widehat{\lambda}_1 = \frac{y_{s+1} - y_s}{x_{s+1} - x_s}, \quad \widehat{\lambda}_2 = \frac{y_s x_{s+1} - y_{s+1} x_s}{x_{s+1} - x_s},$$

$$(1.13)$$

 $npu \ x_s < \delta^{-2} < x_{s+1}, \quad 0 \le s < s_N \ u$

$$\widehat{\lambda}_1 = \frac{y_{N+1}}{x_{N+1}}, \quad \widehat{\lambda}_2 = y_{s_N} - x_{s_N} \widehat{\lambda}_1 \tag{1.14}$$

 $npu \ \delta^{-2} \ge x_{s_N}.$

Тогда погрешность оптимального восстановления равна

$$E(Bh_2, K, \delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m_a(g)(x) = \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} a_{kl}(l+1)g_{kl}|x|^l Y_k^l \left(\frac{x}{|x|}\right),$$
(1.15)

где a_{kl} определены равенствами (1.6), являются оптимальными.

Доказательство. Рассмотрим двойственную задачу

$$||f||_{L_2(\mathbb{B}^d)} \to \max, \quad f \in Bh_2, \quad \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk}|^2 \le \delta^2.$$
 (1.16)

Аналогично доказательству теоремы 1, получим оценку снизу

$$E(Bh_2, K, \delta) \ge \sup_{\substack{f \in Bh_2 \\ \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk}|^2 \le \delta^2}} ||f||_{L_2(\mathbb{B}^d)}.$$

Переходя к квадратам функционала и ограничений, используя (1.8) и обозначение

$$b_l = \sum_{k=1}^{N(l)} |f_{kl}|^2,$$

перепишем задачу (1.16) в виде

$$\sum_{l=0}^{\infty} \frac{b_l}{2l+d} \to \max, \quad \sum_{l=0}^{\infty} b_l \le 1, \quad \sum_{l=0}^{N-1} \frac{b_l}{(l+1)^2} \le \delta^2, \quad b_l \ge 0.$$
 (1.17)

Функция Лагранжа этой задачи имеет вид

$$L(b, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=0}^{\infty} \frac{b_l}{(l+1)^2} \left(\lambda_1 (l+1)^2 + \chi^N(l) \lambda_2 - \frac{(l+1)^2}{2l+d} \right),$$

где $\chi^N(l)$ - характеристическая функция множества $\{0,\ldots,N-1\},$ $b=(b_0,b_1,\ldots).$

Рассмотрим два случая.

Пусть $x_s < \delta^{-2} < x_{s+1}$, $s < s_N$. Выберем $\widehat{\lambda}_1$ и $\widehat{\lambda}_2$ как в (1.13). Следуя тем же рассуждениям, что и в доказательстве теоремы 1, получим

$$y_{j+1} \le \widehat{\lambda}_1 x_{j+1} + \widehat{\lambda}_2, \quad j \le N - 1.$$

При $j \ge N$, имеем

$$\widehat{\lambda}_1 x_{j+1} - y_{j+1} = \frac{y_{s+1} - y_s}{x_{s+1} - x_s} x_{j+1} - y_{j+1} \ge \frac{y_{N+1}}{x_{N+1}} x_{j+1} - y_{j+1} \ge 0.$$

Таким образом, выполнено

$$L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) > -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

Положим

$$\hat{b}_s = x_s \frac{\delta^2 x_{s+1} - 1}{x_{s+1} - x_s}, \quad \hat{b}_{s+1} = x_{s+1} \frac{1 - \delta^2 x_s}{x_{s+1} - x_s},$$

 $\hat{b}_i = 0$, при $i \notin \{s, s+1\}$. Тогда получившийся набор \hat{b} допустим в (1.17), удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{l=0}^{\infty} \widehat{b}_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{N-1} \frac{\widehat{b}_l}{(l+1)^2} - \delta^2 \right) = 0$$

и доставляет минимум функции Лагранжа

$$\min_{b_1 \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

Отсюда следует (аналогично доказательству теоремы 1), что \widehat{b} доставляет максимум в задаче (1.17), что означает

$$E(Bh_2, K, \delta) \ge \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Пусть $\delta^{-2} \geq x_{s_N}$. Выберем $\widehat{\lambda}_1$ и $\widehat{\lambda}_2$ как в (1.14), так что прямая $y = \widehat{\lambda}_1 x + \widehat{\lambda}_2$ проходит через точку (x_{s_N}, y_{s_N}) параллельно прямой $y = \frac{y_{N+1}}{x_{N+1}} x$. Тогда при $0 \leq j \leq s_N - 1$ имеем

$$y_{j+1} \le \frac{y_{s_N} - y_{s_N-1}}{x_{s_N} - x_{s_N-1}} x_{j+1} + y_{s_N} - x_{s_N} \frac{y_{s_N} - y_{s_N-1}}{x_{s_N} - x_{s_N-1}}$$

(точки (x_{j+1},y_{j+1}) лежат под прямой, соединяющей (x_{s_N-1},y_{s_N-1}) и (x_{s_N},y_{s_N})), откуда

$$y_{j+1} \le y_{s_N} - \frac{y_{s_N} - y_{s_N-1}}{x_{s_N} - x_{s_N-1}} (x_{s_N} - x_{j+1}) \le y_{s_N} - \frac{y_{N+1}}{x_{N+1}} (x_{s_N} - x_{j+1}) = \widehat{\lambda}_1 x_{j+1} + \widehat{\lambda}_2.$$

При $s_N \leq j \leq N-1$ выполнено

$$y_{j+1} \le \frac{y_{s_N+1} - y_{s_N}}{x_{s_N+1} - x_{s_N}} x_{j+1} + y_{s_N} - x_{s_N} \frac{y_{s_N+1} - y_{s_N}}{x_{s_N+1} - x_{s_N}}$$

(точки (x_{j+1},y_{j+1}) лежат под прямой, соединяющей (x_{s_N},y_{s_N}) и $(x_{s_N+1},y_{s_N+1})),$ откуда

$$y_{j+1} \le y_{s_N} + \frac{y_{s_N+1} - y_{s_N}}{x_{s_N+1} - x_{s_N}} (x_{j+1} - x_{s_N}) \le y_{s_N} + \frac{y_{N+1}}{x_{N+1}} (x_{j+1} - x_{s_N}) = \widehat{\lambda}_1 x_{j+1} + \widehat{\lambda}_2.$$

Если j > N, то

$$\widehat{\lambda}_1 x_j - y_j = x_j \left(\frac{1}{2N + d - 2} - \frac{1}{2j + d - 2} \right) > 0.$$

Таким образом, выполнено

$$L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) \ge -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

Положим $\hat{b}_i = 0, i \notin \{s_N - 1, N\},$

$$\widehat{b}_{s_N-1} = \delta^2 x_{s_N}, \quad \widehat{b}_N = 1 - \delta^2 x_{s_N}.$$

Тогда набор \widehat{b} допустим в (1.17), удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{l=0}^{\infty} \widehat{b}_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{N-1} \frac{\widehat{b}_l}{(l+1)^2} - \delta^2 \right) = 0$$

и доставляет минимум функции Лагранжа

$$\min_{b_1 \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

Отсюда

$$E(Bh_2, K, \delta) \ge \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Для произвольного δ рассмотрим метод m_a , определенный в (1.15).

При $\widehat{\lambda}_2 = 0$ из (1.6) следует, что a = (0) и $m_0(g) = 0$. Тогда

$$\sup_{\substack{f \in Bh_2 \\ \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk} - g_{lk}|^2 \le \delta^2}} \|m_0(g) - f\|_{L_2(\mathbb{B}^d)}^2 \le \sup_{f \in Bh_2} \|f\|_{L_2(\mathbb{B}^d)}^2 \le \widehat{\lambda}_1.$$

При $\widehat{\lambda}_2 > 0$ имеем

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \frac{(a_{kl}(l+1)g_{kl} - f_{kl})^2}{2l+d} + \sum_{l=N}^{\infty} \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d} =$$

$$\sum_{l=N-1}^{\infty} \sum_{k=1}^{N(l)} \frac{\left(a_{kl}(l+1)(g_{kl} - \frac{f_{kl}}{l+1}) + f_{kl}(a_{kl} - 1)\right)^2}{2l+d} + \sum_{l=N}^{\infty} \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d}.$$

Аналогично теореме 1, применим неравенство Коши-Буняковского. Получим

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 \le \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} A_{kl} \left(\widehat{\lambda}_2 \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \widehat{\lambda}_1 f_{kl}^2 \right) + \sum_{l=N}^{\infty} \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d},$$

где A_{kl} определено в (1.12). Равенства (1.6) эквивалентны неравенствам $A_{kl} \leq 1$. Заметим также, что $\frac{1}{2N+d} \leq \widehat{\lambda}_1$ и потому $\frac{1}{2l+d} \leq \widehat{\lambda}_1$, при $l \geq N$. Тогда

$$e(Bh_2, K, \delta, m_a)^2 = \sup_{\substack{f \in Bh_2 \\ \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk} - g_{lk}|^2 \le \delta^2}} ||m(g) - f||_{L_2(\mathbb{B}^d)}^2 \le$$

$$\sup_{\substack{f \in Bh_2 \\ \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} |Kf_{lk} - g_{lk}|^2 \le \delta^2}} \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \widehat{\lambda}_2 \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \widehat{\lambda}_1 f_{kl}^2 \le$$

$$\widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1$$
.

1.3. функций Восстановление из пространства Харди h_2 информации \mathbf{o} значении оператора радиального интегрирования, заданной конечного набора В виде коэффициентов Фурье, вычисленных с погрешностью в равномерной метрике

В рассмотренном выше случае мы располагали неточной информацией о конечном наборе первых коэффициентов Фурье функции Kf, причем отличие этой информации от точной мы измеряли в метрике l_2 . Пусть теперь нам дан набор чисел $\{\delta_{kl} \geq 0 | l = 0, \dots, N-1, k = 1, \dots, N(l)\}$, характеризующий неточность информации для каждого коэффициента g_{kl} в отдельности. Т.е. для каждой функции $f \in Bh_2$ нам известен набор $g \in \mathbb{R}^q$, $q = \sum_{l=0}^{N-1} N(l)$, такой что

$$|Kf_{kl} - g_{kl}| \le \delta_{kl}, \quad l = 0, \dots, N - 1, \quad k = 1, \dots, N(l).$$

В качестве методов восстановления рассмотрим отображения $m: \mathbb{R}^q \to L_2(\mathbb{B}^d).$ Определим погрешность метода

$$e(Bh_2, K, \delta, m) = \sup_{\substack{f \in Bh_2 \\ |Kf_{kl} - g_{kl}| \le \delta_{kl}}} ||m(g) - f||_{L_2(\mathbb{B}^d)}$$

и погрешность оптимального восстановления

$$E(Bh_2, K, \delta) = \inf_{m: \mathbb{R}^q \to L_2(\mathbb{B}^d)} e(Bh_2, K, \delta, m).$$

Теорема 3 Положим

$$p = \max \left\{ 0 \le p \le N - 1 : \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \delta_{kl}^{2} (l+1)^{2} \le 1 \right\},\,$$

$$\widehat{\lambda} = \frac{1}{2(p+1)+d}, \quad \widehat{\lambda}_{kl} = \frac{(l+1)^2}{2l+d} - \widehat{\lambda}(l+1)^2, \quad l = 0, \dots, p, \quad k = 1, \dots, N(l),$$
(1.18)

 $npu \delta_{10} \leq 1, u \Lambda u$

$$\hat{\lambda} = \frac{1}{d}, \quad \hat{\lambda}_{kl} = 0, \quad l = 0, \dots, p, \quad k = 1, \dots, N(l),$$
 (1.19)

 $npu \ \delta_{10} > 1.$

Тогда погрешность оптимального восстановления равна

$$E(Bh_2, K, \delta) = \sqrt{\widehat{\lambda} + \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \delta_{kl}^2}.$$

 $Memo\partial$

$$m_a(g)(x) = \sum_{l=0}^{p} \sum_{k=1}^{N(l)} a_{kl}(l+1)g_{kl}|x|^l Y_k^l \left(\frac{x}{|x|}\right), \tag{1.20}$$

e

$$a_{kl} = \frac{\widehat{\lambda}_{kl}}{\widehat{\lambda}(l+1)^2 + \widehat{\lambda}_{kl}},\tag{1.21}$$

является оптимальным.

Доказательство. Рассмотрим двойственную задачу

$$||f||_{L_2(\mathbb{B}^d)} \to \max, \quad f \in Bh_2, \quad |Kf_{kl}| \le \delta_{kl},$$

$$(1.22)$$

$$l = 0, \dots, N-1, \quad k = 1, \dots, N(l).$$

Имеем оценку снизу

$$E(Bh_2, K, \delta) \ge \sup_{\substack{f \in Bh_2 \ |Kf_{kl}| \le \delta_{kl}}} ||f||_{L_2(\mathbb{B}^d)}.$$

Переходя к квадратам функционала и ограничений и используя (1.8), перепишем задачу (1.22) в виде

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{2l+d} \to \max, \quad \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |f_{kl}|^2 \le 1, \quad \frac{|f_{kl}|^2}{(l+1)^2} \le \delta_{kl}^2, \tag{1.23}$$

$$l = 0, \dots, N-1, \quad k = 1, \dots, N(l).$$

Функция Лагранжа этой задачи имеет вид

$$L(f,\bar{\lambda}) = -\lambda - \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \lambda_{kl} \delta_{kl}^2 + \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{(l+1)^2} \left(\lambda(l+1)^2 + \lambda_{kl} - \frac{(l+1)^2}{2l+d} \right) + \frac{(l+1)^2}{2l+d} + \frac{$$

$$\sum_{l=N}^{\infty} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{(l+1)^2} \left(\lambda (l+1)^2 - \frac{(l+1)^2}{2l+d} \right),$$

где $\bar{\lambda} = \{\lambda, \lambda_{10}, \dots, \lambda_{N(l)N-1}\}.$

Пусть $\delta_{10} \le 1$, возьмем

$$\widehat{\lambda} = \frac{1}{2(p+1)+d}, \quad \widehat{\lambda}_{kl} = \begin{cases} \frac{(l+1)^2}{2l+d} - \widehat{\lambda}(l+1)^2, & l \le p, \\ 0, & p < l \le N-1. \end{cases}$$

Заметим, что

$$\widehat{\lambda}_{kl} = \frac{(l+1)^2}{2l+d} - \frac{(l+1)^2}{2(p+1)+d} \ge 0, \quad l \le p.$$

Тогда при $l \leq p$

$$\widehat{\lambda}(l+1)^2 + \widehat{\lambda}_{kl} - \frac{(l+1)^2}{2l+d} = 0.$$

При l > p

$$\widehat{\lambda}(l+1)^2 - \frac{(l+1)^2}{2l+d} = \frac{(l+1)^2}{2(p+1)+d} - \frac{(l+1)^2}{2l+d} \ge 0.$$

Таким образом,

$$L(b,\widehat{\bar{\lambda}}) \ge -\widehat{\lambda} - \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \lambda_{kl} \delta_{kl}^2 = -\widehat{\lambda} - \sum_{l=0}^p \sum_{k=1}^{N(l)} \lambda_{kl} \delta_{kl}^2.$$

Положим

$$\widehat{f}_{kl} = \begin{cases} \delta_{kl}(l+1), & l \leq p, \\ \sqrt{1 - \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \delta_{kl}^{2}(l+1)^{2}}, & l = p+1, \\ 0, & l > p+1. \end{cases}$$

Функция $\widehat{f}(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \widehat{f}_{kl} |x|^l Y_k^l \left(\frac{x}{|x|}\right)$ допустима в (1.23), т.к.

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |\widehat{f}_{kl}|^2 = 1, \quad \frac{|f_{kl}|^2}{(l+1)^2} - \delta_{kl}^2 = 0, \quad l \le p, \quad k = 1, ..., N(l).$$

Если p < N - 1, то

$$\frac{|f_{kp+1}|^2}{(p+2)^2} \le \delta_{kp+1}^2,$$

т.к. в противном случае имели бы $\sum_{l=0}^{p+1}\sum_{k=1}^{N(l)}\delta_{kl}^2(l+1)^2<1,$ что противоречит определению p. Тогда

$$\widehat{\lambda} \left(\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |\widehat{f}_{kl}|^2 - 1 \right) + \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \left(\frac{|\widehat{f}_{kl}|}{(l+1)^2} - \delta_{kl}^2 \right) = 0$$

И

$$L(\widehat{f},\widehat{\overline{\lambda}}) = -\widehat{\lambda} - \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \delta_{kl}^2 = -\widehat{\lambda} - \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \delta_{kl}^2.$$

Следовательно,

$$E(Bh_2, K, \delta) \ge \sqrt{\widehat{\lambda} + \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \delta_{kl}^2}.$$

Пусть $\delta_{10}>1$. Положим $\widehat{\bar{\lambda}}=(\frac{1}{d},0,\ldots,0)$. Тогда, очевидно

$$L(f,\widehat{\bar{\lambda}}) \ge -\frac{1}{d}.$$

Функция $\widehat{f}(x)=Y_1^0\left(\frac{x}{|x|}\right)$ допустима в (1.23), удовлетворяет условиям дополняющей нежесткости и $L(\widehat{f},\widehat{\bar{\lambda}})=-\frac{1}{d}$, откуда следует

$$E(Bh_2, K, \delta) \ge \sqrt{\frac{1}{d}}.$$

Для произвольного δ рассмотрим метод m_a , определенный в (1.20). При $\widehat{\lambda}_{kl}=0$ из (1.21) следует, что $a_{kl}=0$. Тогда

$$\sup_{\substack{f \in Bh_2 \\ |Kf_{kl} - g_{kl}| \le \delta_{kl}}} ||m_0(g) - f||_{L_2(\mathbb{B}^d)}^2 \le \sup_{f \in Bh_2} ||f||_{L_2(\mathbb{B}^d)}^2 \le \widehat{\lambda}.$$

В противном случае, имеем

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^p \sum_{k=1}^{N(l)} \frac{(a_{kl}(l+1)g_{kl} - f_{kl})^2}{2l+d} + \sum_{l=p+1}^\infty \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d} =$$

$$\sum_{l=0}^{p} \sum_{k=1}^{N(l)} \frac{\left(a_{kl}(l+1)(g_{kl} - \frac{f_{kl}}{l+1}) + f_{kl}(a_{kl} - 1)\right)^2}{2l+d} + \sum_{l=p+1}^{\infty} \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d}.$$

Аналогично теореме 1, применим неравенство Коши-Буняковского. Получим

$$||m_a(g) - f||_{L_2(\mathbb{B}^d)}^2 \le \sum_{l=0}^p \sum_{k=1}^{N(l)} A_{kl} \left(\widehat{\lambda}_{kl} \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \widehat{\lambda} f_{kl}^2 \right) + \sum_{l=p+1}^\infty \sum_{k=1}^{N(l)} \frac{f_{kl}^2}{2l+d},$$

где

$$A_{kl} = \frac{1}{2l+d} \left(\frac{a_{kl}^2(l+1)^2}{\widehat{\lambda}_{kl}} + \frac{(a_{kl}-1)^2}{\widehat{\lambda}} \right).$$

Равенства (1.21) эквивалентны равенствам $A_{kl}=1$. Заметим также, что $\frac{1}{2l+d} \leq \widehat{\lambda},$ при $l \geq p+1$. Тогда

$$e(Bh_2, K, \delta, m_a)^2 = \sup_{\substack{f \in Bh_2 \\ |Kf_{lk}| \le \delta_{kl}}} ||m(g) - f||_{L_2(\mathbb{B}^d)}^2 \le$$

$$\sup_{\substack{f \in Bh_2 \\ |Kf_{lk}| \le \delta_{kl}}} \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \left(g_{kl} - \frac{f_{kl}}{l+1} \right)^2 + \sum_{l=p+1}^{\infty} \sum_{k=1}^{N(l)} \widehat{\lambda}_{f_{kl}}^2 \le \sum_{l=0}^{p} \sum_{k=1}^{N(l)} \widehat{\lambda}_{kl} \delta_{kl}^2 + \widehat{\lambda}.$$

Если разложение функции f состоит только из гармоник степени не более N-1, то при стремлении $\max \delta_{kl} \to 0$ оптимальный метод $m_a(g)$ переходит в точную формулу

$$m_1(g) = \sum_{l=0}^{N-1} \sum_{k=1}^{N(l)} (l+1)g_{kl}|x|^l Y_k^l \left(\frac{x}{|x|}\right).$$

Заметим, что величина p определяет, какое количество информации достаточно знать для оптимального восстановления, т.к. при p < N-1 мы не используем коэффициенты $\{g_{kl}\}, l=p,\ldots,N-1$. Более того, исключение лишней информации и применение фильтра a позволяет существенно улучшить результат восстановления, по сравнению с методом $m_1(g)$.

Рассмотрим функцию $f(z) = \sqrt{\frac{4}{5\pi}} \operatorname{Re} z(z - \frac{1}{2})$, гармоническую в круге \mathbb{B}^2 , для которой $||f||_{h_2} = 1$ (рис. (1.3)). Пусть N = 10, т.е. известны $\sum_{l=0}^9 N(l,2) = 19$ первых коэффициентов Фурье функции Kf, заданных с погрешностями

$$(\delta_{kl}) = \begin{pmatrix} 0,02 & 0,01 & 0,001 & 0,02 & 0,01 & 0,01 & 0,01 & 0,2 & 0,2 & 0,01 \\ & 0,01 & 0,001 & 0,02 & 0,01 & 0,01 & 0,01 & 0,2 & 0,2 & 0,01 \end{pmatrix}.$$

В этом случае, p=6 и в оптимальном методе используются только 13 первых коэффициентов. Результаты восстановления представлены на рис. (1.4). Из

рисунка видно, что оптимальный метод $m_a(g)$ восстанавливает функцию f значительно точнее метода $m_1(g)$.

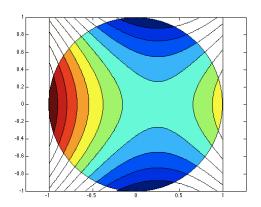


Рис. 1.3. На рисунке изображены линии уровня функция $f(z) = \sqrt{\tfrac{4}{5\pi}} \operatorname{Re} z(z - \tfrac{1}{2}).$

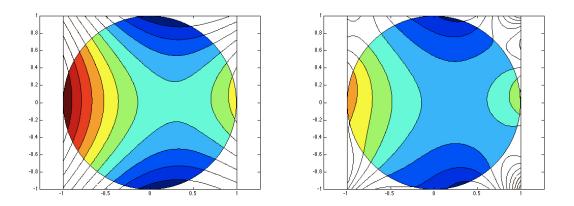


Рис. 1.4. Слева — результат восстановления оптимальным методом $m_a(g)$, справа — методом $m_1(g)$.

Глава 2

Оптимальное восстановление функции по ее неточно заданному преобразованию Радона

В главе рассматриваются задачи оптимального восстановления функций из пространства Харди h_2 функций в шаре и пространства $L_2(\mathbb{R}^d)$ по их преобразованию Радона, измеренному с погрешностью в среднеквадратичной метрике. Для рассматриваемых классов функций найдена погрешность оптимального восстановления и семейство оптимальных методов, на которых эта погрешность достигается. В третьем разделе рассматривается задача оптимального восстановления функции из класса квадратично-интегрируемых функций на сфере, имеющих ограниченную L_2 -норму степени сферического Лапласиана $(-\Delta)^{\alpha/2}$, по неточно заданному (в среднеквадратичной метрике) преобразованию Минковского-Функа (сферическое преобразование Радона).

2.1. Оптимальное восстановление функций из пространства Харди h_2 по неточно заданному преобразованию Радона

Рассмотрим пространство Харди h_2 и продолжим функции $f \in Bh_2$ на \mathbb{R}^d , положив f(x) = 0, $|x| \ge 1$. Предположим, что для функций из получившегося класса, их преобразование Радона Rf известно с некоторой погрешностью. Будем считать, что нам известна функция $g \in L_2(Z)$, такая что

$$||Rf - g||_{L_2(Z)} \le \delta, \quad \delta > 0.$$

Задача состоит в нахождении оптимального метода восстановления функции f по информации g. Под методом восстановления понимается произвольное отображение $m: L_2(Z) \to L_2(\mathbb{B}^d)$, а погрешностью метода называется величина

$$e(\delta, m) = \sup_{\substack{f \in Bh_2, g \in L_2(Z) \\ ||Rf - g||_{L_2(Z)} \le \delta}} ||f - m(g)||_{L_2(\mathbb{B}^d)}.$$

Погрешностью оптимального восстановления называется наименьшая из погрешностей всех возможных методов

$$E(\delta) = \inf_{m: L_2(Z) \to L_2(\mathbb{B}^d)} e(\delta, m).$$

Метод, на котором достигается погрешность оптимального восстановления, называется оптимальным методом восстановления. Рассмотрим множество точек $\{(x_l, y_l)\}_{l=0,...}$, заданное формулами

$$x_l = \frac{\Gamma^2(\frac{d+1}{2})\Gamma(d+l+\frac{1}{2})}{\pi^{d-1}\Gamma(d)\Gamma(l+\frac{1}{2})}, \quad y_l = \frac{x_l}{2l+d}.$$

Пусть $x_s < \delta^{-2} \le x_{s+1}, \ s \ge 0$, тогда положим

$$\widehat{\lambda}_1 = \frac{y_{s+1} - y_s}{x_{s+1} - x_s}, \quad \widehat{\lambda}_2 = \frac{y_s x_{s+1} - y_{s+1} x_s}{x_{s+1} - x_s}.$$
(2.1)

Если $\delta^{-2} \le x_0$, положим

$$\widehat{\lambda}_1 = \frac{y_0}{x_0}, \quad \widehat{\lambda}_2 = 0.$$

В следующей теореме дается решение поставленной задачи об оптимальном восстановлении функций из Bh_2 по их неточно заданному преобразованию Радона.

Теорема 4 Погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m_a(g)(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} a_{kl} \frac{(\widehat{g}_{kl}, \psi_l)}{(\psi_l, \psi_l)} |x|^l Y_k^l \left(\frac{x}{|x|}\right), \tag{2.2}$$

где

$$g_{kl}(s) = \int_{\mathbb{S}^{d-1}} g(\theta, s) Y_k^l(\theta) d\theta,$$

$$\psi_l(\sigma) = (2\pi)^{(d-1)/2} i^{-l} \sigma^{-d/2} J_{l+d/2}(\sigma),$$

 J_l - функция Бесселя 1-го рода l-го порядка,

$$a_{kl} = \frac{\widehat{\lambda}_2}{\widehat{\lambda}_1 x_l + \widehat{\lambda}_2} + \epsilon_{kl} \frac{\sqrt{\widehat{\lambda}_1 \widehat{\lambda}_2 (2l+d)}}{\widehat{\lambda}_1 x_l + \widehat{\lambda}_2} \sqrt{\widehat{\lambda}_1 x_l + \widehat{\lambda}_2 - \frac{x_l}{2l+d}}, \tag{2.3}$$

 ϵ_{kl} — произвольные числа из отрезка [-1;1], являются оптимальными. Доказательство. Рассмотрим двойственную задачу

$$||f||_{L_2(\mathbb{B}^d)}^2 \to \max, \quad ||f||_{h_2}^2 \le 1, \quad ||Rf||_{L_2(Z)}^2 \le \delta^2.$$

Ee решение дает оценку снизу для квадрата погрешности оптимального восстановления в силу следующей цепочки неравенств (в которой m — произвольный метод)

$$e(\delta,m) = \sup_{\substack{f \in Bh_2, g \in L_2(Z) \\ \|Rf - g\|_{L_2(Z)} \le \delta}} \|m(g) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|m(0) - f\|_{L_2(\mathbb{B}^d)} \le \sup_{$$

$$\sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \frac{\|m(0) - f\|_{L_2(\mathbb{B}^d)} + \|-m(0) - f\|_{L_2(\mathbb{B}^d)}}{2} \ge \sup_{\substack{f \in Bh_2 \\ \|Rf\|_{L_2(Z)} \le \delta}} \|f\|_{L_2(\mathbb{B}^d)}.$$

Найдем решение двойственной задачи. Пользуясь (2) и равенством Парсеваля, получим

$$||f||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{|f_{kl}|^2}{2l+d}, \quad ||f||_{h_2}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |f_{kl}|^2.$$

Далее,

$$||Rf||_{L_2(Z)}^2 = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |Rf(\theta, s)|^2 ds d\theta = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |\widehat{R_{\theta}f}(\sigma)|^2 d\sigma d\theta$$

$$= \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} (2\pi)^{d-1} |\widehat{f}(\sigma\theta)|^2 d\sigma d\theta$$

$$= \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} (2\pi)^{d-1} |(2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-ix \cdot \sigma\theta} f(x) dx \Big|^2 d\sigma d\theta$$

$$= \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} \left| \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} f_{kl} (2\pi)^{-1/2} \int_{0}^{1} r^{d-1+l} \int_{\mathbb{S}^{d-1}} e^{-ir\sigma\phi \cdot \theta} Y_{k}^{l}(\phi) d\phi dr \right|^2 d\sigma d\theta,$$

где мы использовали проекционную теорему 1 и выполнили замену $x=r\phi, \quad r\in [0,1], \quad \phi\in \mathbb{S}^{d-1}.$ По теореме Функа-Хекке 3, имеем

$$\int_{\mathbb{S}^{d-1}} e^{-ir\sigma\phi\cdot\theta} Y_k^l(\phi) d\phi = |\mathbb{S}^{d-2}| \int_{-1}^1 e^{-ir\sigma t} C_l^{(d-2)/2}(t) (1-t^2)^{(d-3)/2} dt Y_k^l(\theta).$$

Обозначим

$$\psi_l(\sigma) = (2\pi)^{-1/2} \int_0^1 r^{d-1+l} |\mathbb{S}^{d-2}| \int_{-1}^1 e^{-ir\sigma t} C_l^{(d-2)/2}(t) (1-t^2)^{(d-3)/2} dt dr,$$

тогда

$$||Rf||_{L_2(Z)}^2 = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} \left| \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} f_{kl} \psi_l(\sigma) Y_k^l(\theta) \right|^2 d\sigma d\theta.$$

Функции Y_k^l образуют ортонормированный базис в $L_2(\mathbb{S}^{d-1})$, поэтому, применяя равенство Парсеваля, получим

$$||Rf||_{L_2(Z)}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |f_{k,l}|^2 \int_{\mathbb{R}} |\psi_l(\sigma)|^2 d\sigma = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} |f_{k,l}|^2 (\psi_l, \psi_l).$$

Вводя обозначения $b_l = \sum_{k=1}^{N(l)} |f_{kl}|^2$ и $x_l^{-1} = (\psi_l, \psi_l)$, запишем двойственную задачу в виде

$$\sum_{l=0}^{\infty} \frac{b_l}{2l+d} \to \max, \quad \sum_{l=0}^{\infty} b_l \le 1, \quad \sum_{l=0}^{\infty} \frac{b_l}{x_l} \le \delta^2, \quad b_l \ge 0.$$
 (2.4)

Функция Лагранжа этой задачи имеет вид

$$L(b, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=0}^{\infty} \frac{b_l}{x_l} (\lambda_1 x_l + \lambda_2 - y_l), \quad y_l = \frac{x_l}{2l+d}.$$

Рассмотрим множество $\{(x_l,y_l)|l=0,1\dots\}$. Для описания его свойств, преобразуем выражения для x_l и y_l , вычислив соответствующие интегралы. Начнем с $\psi_l(\sigma)$. Для вычисления внутреннего интеграла воспользуемся соотношениями

$$\int_{-1}^{1} (1 - t^2)^{\lambda - 1/2} e^{i\sigma t} C_l^{\lambda}(t) dt = \frac{\pi 2^{1 - \lambda} \Gamma(2\lambda)}{\Gamma(\lambda)} i^l \sigma^{-\lambda} J_{l + \lambda}(\sigma)$$

(формула (3)) и $J_l(-\sigma) = (-1)^l J_l(\sigma)$. Получим

$$\int_{-1}^{1} e^{-ir\sigma t} C_{l}^{(d-2)/2}(t) (1-t^{2})^{(d-3)/2} dt = \frac{\pi 2^{1-(d-2)/2} \Gamma(d-2)}{\Gamma(\frac{d-2}{2})} i^{-l}(r\sigma)^{\frac{2-d}{2}} J_{l+\frac{d-2}{2}}(r\sigma).$$

Подставляя $|\mathbb{S}^{d-2}|=\frac{2\pi^{(d-1)/2}}{\Gamma(\frac{d-1}{2})}$ и $\Gamma(z)\Gamma(z+\frac{1}{2})=2^{1-2z}\sqrt{\pi}\Gamma(2z)$, имеем

$$|\mathbb{S}^{d-2}| \frac{\pi 2^{1-(d-2)/2} \Gamma(d-2)}{\Gamma(\frac{d-2}{2})} = \frac{2\pi^{(d-1)/2}}{\Gamma(\frac{d-1}{2})} \frac{\pi 2^{1-(d-2)/2} \Gamma(d-2)}{\Gamma(\frac{d-2}{2})}$$

$$=\frac{2^{2-(d-2)/2}\pi^{(d-1)/2+1}\Gamma(d-2)}{2^{1-(d-2)}\sqrt{\pi}\Gamma(d-2)}=(2\pi)^{d/2}.$$

Откуда

$$\psi_l(\sigma) = i^{-l} (2\pi)^{\frac{d-1}{2}} \sigma^{\frac{2-d}{2}} \int_0^1 r^{\frac{d}{2}+l} J_{l+\frac{d-2}{2}}(r\sigma) dr.$$

Используем следующее свойство функций Бесселя $x^l J_{l-1}(x) = \frac{d}{dx}(x^l J_l(x))$. Таким образом

$$\psi_l(\sigma) = i^{-l} (2\pi)^{\frac{d-1}{2}} \sigma^{\frac{2-d}{2}} \frac{1}{\sigma^{d/2+l+1}} \int_0^{\sigma} J_{l+d/2-1}(t) t^{d/2+l} dt$$

$$= i^{-l} (2\pi)^{\frac{d-1}{2}} \sigma^{\frac{2-d}{2}} \frac{1}{\sigma^{d/2+l+1}} \int_0^{\sigma} d\left(J_{l+d/2}(t)t^{d/2+l}\right) = i^{-l} (2\pi)^{\frac{d-1}{2}} \sigma^{\frac{2-d}{2}} \frac{J_{l+d/2}(\sigma)}{\sigma}$$
$$= i^{-l} (2\pi)^{\frac{d-1}{2}} \sigma^{\frac{-d}{2}} J_{l+d/2}(\sigma).$$

Возвращаясь к x_l , получим

$$x_l^{-1} = (\psi_l, \psi_l) = (2\pi)^{d-1} \int_{\mathbb{R}} \frac{|J_{l+d/2}(\sigma)|^2}{|\sigma|^d} d\sigma = (2\pi)^{d-1} 2 \int_0^\infty \frac{|J_{l+d/2}(\sigma)|^2}{|\sigma|^d} d\sigma.$$

Воспользуемся соотношением (30) пункта 7.7 из [36]

$$\int_0^\infty J_{\mu}(at)J_v(at)t^{-\rho}dt = \frac{\left(\frac{a}{2}\right)^{\rho-1}\Gamma(\rho)\Gamma\left(\frac{v+\mu+1-\rho}{2}\right)}{2\Gamma\left(\frac{1+v-\mu+\rho}{2}\right)\Gamma\left(\frac{1+v+\mu+\rho}{2}\right)\Gamma\left(\frac{1+\mu-v+\rho}{2}\right)},$$

$$Re(v + \mu + 1) > Re \rho > 0, \quad a > 0.$$

Положив $\mu=v=l+d/2,\quad a=1,\quad
ho=d,$ получим

$$x_l^{-1} = (2\pi)^{d-1} 2 \int_0^\infty \frac{|J_{l+d/2}(\sigma)|^2}{|\sigma|^d} d\sigma = \frac{(\pi)^{d-1} \Gamma(d) \Gamma(l+\frac{1}{2})}{\Gamma^2(\frac{d+1}{2}) \Gamma(d+l+\frac{1}{2})}.$$

Заметим, что $x_l \to \infty$ и $y_l \to \infty$. А также, для всех $l \geq 1$ выполнено неравенство

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} \le \frac{y_l - y_{l-1}}{x_l - x_{l-1}}.$$

Для доказательства используем известное свойство гамма функции $\Gamma(l+1)=l\Gamma(l).$ Имеем

$$x_{l+1} = \frac{(l+d+\frac{1}{2})}{(l+\frac{1}{2})}x_l.$$

Тогда

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} = \frac{l(2d-2) + d^2 - 1}{d(2l+2+d)(2l+d)}.$$

Нетрудно убедиться, что эта величина монотонно убывает. Отсюда следует, что любая прямая, соединяющая соседние точки множества $\{(x_l,y_l)|l=0,\ldots\}$ является опорной к этому множеству. В частности, это

верно для прямой, соединяющей точки (x_s,y_s) и (x_{s+1},y_{s+1}) , которая имеет вид $y=\widehat{\lambda}_1x+\widehat{\lambda}_2$, где $\widehat{\lambda}_1$, $\widehat{\lambda}_2$ определены в (2.1). В случае $\delta^{-2}\leq x_0$ рассмотрим прямую $y=\frac{y_0}{x_0}x$, соединяющую точки (0,0) и (x_0,y_0) , и положим $\widehat{\lambda}_1=\frac{y_0}{x_0},\ \widehat{\lambda}_2=0$. Тогда для всех $l=0,\ldots$ выполнено $\widehat{\lambda}_1x_l+\widehat{\lambda}_2-y_l\geq 0$ и $L(b,\widehat{\lambda}_1,\widehat{\lambda}_2)\geq -\widehat{\lambda}_1-\widehat{\lambda}_2\delta^2$. Рассмотрим элемент $\widehat{b}=(b_0,b_1,\ldots)$,

$$\widehat{b}_{i} = \begin{cases} 0, & i \notin \{s, s+1\}, \\ x_{s} \frac{\delta^{2} x_{s+1} - 1}{x_{s+1} - x_{s}}, & i = s, \\ x_{s+1} \frac{1 - \delta^{2} x_{s}}{x_{s+1} - x_{s}}, & i = s+1. \end{cases}$$

Элемент \widehat{b} допустим в (2.4), удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{l=0}^{\infty} \widehat{b}_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{x_l} - \delta^2 \right) = 0$$

и доставляет минимум функции Лагранжа

$$\min_{b} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{2l+d} = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

В силу того, что $\widehat{\lambda}_1, \widehat{\lambda}_2 \geq 0$, верно неравенство

$$L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) \le -\sum_{l=0}^{\infty} \frac{b_l}{2l+d},$$

откуда

$$\min_{b_l \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) \le \min_{\substack{b_l \ge 0 \\ \sum_{l=0}^{\infty} b_l \le 1 \\ \sum_{l=0}^{\infty} \frac{b_l}{x_l} \le \delta^2}} - \sum_{l=0}^{\infty} \frac{b_l}{2l+d}.$$

Но, из того, что \widehat{b} минимизирует функцию Лагранжа и удовлетворяет

условиям дополняющей нежесткости следует

$$\min_{b_l \ge 0} L(b, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{b}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{2l+d}.$$

Таким образом,

$$-\sum_{l=0}^{\infty} \frac{\widehat{b}_l}{2l+d} \le \min_{\substack{b_l \ge 0 \\ \sum_{l=0}^{\infty} b_l \le 1 \\ \sum_{l=0}^{\infty} \frac{b_l}{x_l} \le \delta^2}} - \sum_{l=0}^{\infty} \frac{b_l}{2l+d},$$

что означает, что набор \widehat{b} является точкой максимума в задаче (2.4), решение которой равно $\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2$. Отсюда получаем оценку снизу для погрешности оптимального восстановления $E(\delta) \geq \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}$.

Покажем теперь, что погрешность $e(\delta, m)$ для всех методов (2.2) совпадает с полученной оценкой.

При $\delta^{-2} \leq x_0$ (эквивалентно $\widehat{\lambda}_2 = 0$) из (2.3) следует, что $m_a(g) = 0$. Тогда

$$\sup_{\substack{f \in Bh_2, g \in L_2(Z) \\ \|Rf - g\|_{L_2(Z)} \le \delta}} \|f - m_a(g)\|_{L_2(\mathbb{B}^d)}^2 \le \sup_{\substack{f \in Bh_2 \\ \|F - g\|_{L_2(Z)} \le \delta}} \|f\|_{L_2(\mathbb{B}^d)}^2 = \sup_{\substack{f \in Bh_2, \\ \|Rf\|_{L_2(Z)} \le \delta}} \|f\|_{L_2(Z)}^2 \le \widehat{\lambda}_1.$$

При $\widehat{\lambda}_2 > 0$ имеем

$$||f - m_a(g)||_{L_2(\mathbb{B}^d)}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{(f_{kl} - a_{kl} \frac{(\widehat{g}_{kl}, \psi_l)}{(\psi_l, \psi_l)})^2}{2l + d}$$

$$=\sum_{l=0}^{\infty}\sum_{k=1}^{N(l)}\frac{\left(a_{kl}((\widehat{g}_{kl},\psi_l)-f_{kl}(\psi_l,\psi_l))+f_{kl}(\psi_l,\psi_l)(a_{kl}-1)\right)^2}{(2l+d)(\psi_l,\psi_l)^2}.$$

Применив неравенство Коши-Буняковского $(x,y)^2 \le ||x||^2 ||y||^2$ к векторам

$$x = \left(\frac{(\psi_l, \psi_l)(a_{kl} - 1)}{\sqrt{\widehat{\lambda}_1}}, a_{kl} \frac{\sqrt{(\psi_l, \psi_l)}}{\sqrt{\widehat{\lambda}_2}}\right),$$

$$y = \left(f_{kl} \sqrt{\widehat{\lambda}_1}, ((\widehat{g}_{kl}, \psi_l) - f_{kl}(\psi_l, \psi_l)) \frac{\sqrt{\widehat{\lambda}_2}}{\sqrt{(\psi_l, \psi_l)}} \right),$$

получим

$$||f - m_{a}(g)||_{L_{2}(\mathbb{B}^{d})}^{2} \leq \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} A_{kl} \left(f_{kl}^{2} \widehat{\lambda}_{1} + ((\widehat{g}_{kl}, \psi_{l}) - f_{kl}(\psi_{l}, \psi_{l}))^{2} \frac{\widehat{\lambda}_{2}}{(\psi_{l}, \psi_{l})} \right)$$

$$\leq \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} A_{kl} \left(f_{kl}^{2} \widehat{\lambda}_{1} + (\widehat{g}_{kl} - f_{kl} \psi_{l}, \psi_{l})^{2} \frac{\widehat{\lambda}_{2}}{(\psi_{l}, \psi_{l})} \right)$$

$$\leq \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} A_{kl} \left(f_{kl}^{2} \widehat{\lambda}_{1} + ||\widehat{g}_{kl} - f_{kl} \psi_{l}||_{L_{2}(\mathbb{R})}^{2} \widehat{\lambda}_{2} \right),$$

где

$$A_{kl} = \frac{1}{(2l+d)(\psi_l, \psi_l)^2} \left(\frac{(\psi_l, \psi_l)^2 (a_{kl} - 1)^2}{\widehat{\lambda}_1} + \frac{a_{kl}^2 (\psi_l, \psi_l)}{\widehat{\lambda}_2} \right)$$
$$= \frac{1}{(2l+d)} \left(\frac{(a_{kl} - 1)^2}{\widehat{\lambda}_1} + \frac{a_{kl}^2}{\widehat{\lambda}_2} x_l \right).$$

Аналогично рассуждениям, использованным для вычисления $\|Rf\|_{L_2(Z)}^2$, имеем

$$\|g - Rf\|_{L_2(Z)}^2 = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} \left| \widehat{g}_{\theta}(\sigma) - \widehat{Rf}_{\theta}(\sigma) \right|^2 d\sigma d\theta$$

$$= \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} \left| \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} (\widehat{g}_{kl}(\sigma) - f_{kl}\psi_l(\sigma)) Y_k^l(\theta) \right|^2 d\sigma d\theta = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \|\widehat{g}_{kl} - f_{kl}\psi_l\|_{L_2(\mathbb{R})}.$$

Условие (2.3) эквивалентно $A_{kl} \leq 1$, следовательно

$$||f - m_a(g)||_{L_2(\mathbb{B}^d)}^2 \le \widehat{\lambda}_1 ||f||_{Bh_2} + \widehat{\lambda}_2 ||g - Rf||_{L_2(Z)}^2 \le \widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2.$$

Таким образом, семейство методов (2.2) является оптимальным, а погрешность оптимального восстановления равна $\sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}$. Теорема доказана.

Набор a_{kl} является фильтром, определяющим значение гармоник в

восстановлении функции f. В зависимости от δ коэффициенты некоторых гармоник можно положить равными 0, а некоторых 1, т.е. некоторые гармоники можно не учитывать, а другие не нуждаются в фильтрации. Например, при $\delta \geq 1/\sqrt{x_0}$ погрешность оптимального восстановления становится равной $\sqrt{1/d}$, а оптимальным является метод $m_0(g)(x) = 0$, где все коэффициенты a_{kl} равны нулю. Соотношение между объемом полезной информации и погрешностью, с которой она задана, дает

Следствие 2 В условиях теоремы 4 методы

$$m_a(g)(x) = \sum_{l < l'} \sum_{k=1}^{N(l)} \frac{(\widehat{g}_{kl}, \psi_l)}{(\psi_l, \psi_l)} |x|^l Y_k^l \left(\frac{x}{|x|}\right) + \sum_{l' < l < l''} \sum_{k=1}^{N(l)} a_{kl} \frac{(\widehat{g}_{kl}, \psi_l)}{(\psi_l, \psi_l)} |x|^l Y_k^l \left(\frac{x}{|x|}\right),$$

e

$$l' = \max\{l|y_l \le \widehat{\lambda}_2\}, \quad l'' = \min\left\{l|l \ge \frac{1-\widehat{\lambda}_1 d}{2\widehat{\lambda}_1}\right\},$$

являются оптимальными.

Доказательство. Подставим $a_{kl}=0$ и $a_{kl}=1$ в $A_{kl}=\frac{1}{(2l+d)}\left(\frac{(a_{kl}-1)^2}{\widehat{\lambda}_1}+\frac{a_{kl}^2}{\widehat{\lambda}_2}x_l\right)$. Получим, что условие $A_{kl}\leq 1$ эквивалентно $l\geq \frac{1-\widehat{\lambda}_1 d}{2\widehat{\lambda}_1}$ и $y_l\leq \widehat{\lambda}_2$, соответственно.

Из следствия следует, что начиная с некоторой степени, все гармоники больших степеней не влияют на погрешность оптимального восстановления и их можно занулить, а некоторое число первых гармоник не нужно фильтровать. С ростом δ число ненулевых коэффициентов гармоник уменьшается, пока они все не обнуляются при $\delta \geq 1/\sqrt{x_0}$. При уменьшении δ увеличивается чило гармоник, не нуждающихся в фильтрации, а оптимальный метод переходит в точную формулу восстановления

$$m(g)(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \frac{(\widehat{g}_{kl}, \psi_l)_{L_2(\mathbb{R})}}{(\psi_l, \psi_l)_{L_2(\mathbb{R})}} |x|^l Y_k^l \left(\frac{x}{|x|}\right).$$

2.2. Оптимальное восстановление функций из $L_2(\mathbb{R}^d)$ по неточно заданному преобразованию Радона

Рассматривается задача оптимального восстановления функции из $L_2(\mathbb{R}^d)$, имеющей ограниченную (в среднеквадратичной метрике) степень оператора Лапласа по ее неточно заданному преобразованию Радона. Получены явные выражения для погрешности оптимального восстановления и семейства оптимальных методов. В качестве следствия, приведено одно неравенство для норм преобразования Радона и степени оператора Лапласа.

Рассмотрим множество функций $f \in L_2(\mathbb{R}^d)$, для которых $|\xi|^{\alpha} \widehat{f}(\xi) \in L_2(\mathbb{R}^d)$. Определим на нем отображение $(-\Delta)^{\alpha/2}$, $\alpha \geqslant 0$ по формуле

$$\widehat{(-\Delta)^{\alpha/2}}f(\xi) = |\xi|^{\alpha}\widehat{f}(\xi).$$

Определим класс $W = \{ f \in L_2(\mathbb{R}^d) : \|(-\Delta)^{\alpha/2} f\|_{L_2(\mathbb{R}^d)} \leqslant 1; \quad Rf \in L_2(Z) \}.$

Предположим, что функция Rf известна с погрешность δ , т.е. дана функция $g \in L_2(Z)$, такая что

$$||Rf - g||_{L_2(Z)} \le \delta, \quad \delta > 0.$$

Задача состоит в нахождении оптимального метода восстановления функции $f \in W$ по информации g. Под методом восстановления понимается произвольное отображение $m: L_2(Z) \to L_2(\mathbb{R}^d)$, а погрешностью метода называется величина

$$e(\delta, m) = \sup_{\substack{f \in W, g \in L_2(Z) \\ ||Rf - g||_{L_2(Z)} \le \delta}} ||f - m(g)||_{L_2(\mathbb{R}^d)}.$$

Погрешностью оптимального восстановления называется наименьшая из

погрешностей всех возможных методов

$$E(\delta) = \inf_{m: L_2(Z) \to L_2(\mathbb{R}^d)} e(\delta, m).$$

Метод, на котором достигается погрешность оптимального восстановления, называется оптимальным методом восстановления.

Рассмотрим функции

$$x(\sigma) = (2\pi)^{1-d} \sigma^{d-1+2\alpha} \chi_{[0,\infty)}(\sigma), \quad y(\sigma) = (2\pi)^{1-d} \sigma^{d-1} \chi_{[0,\infty)}(\sigma), \quad \sigma \in \mathbb{R}.$$
(2.5)

Положим

$$\widehat{\lambda}_{1} = (2\pi)^{\frac{(d-1)(d-2)}{d-1+2\alpha}} \frac{(d-1)}{d-1+2\alpha} \delta^{\frac{4\alpha}{d-1+2\alpha}}, \quad \widehat{\lambda}_{2} = (2\pi)^{\frac{(d-1)(d-2)}{d-1+2\alpha}} \frac{2\alpha}{d-1+2\alpha} \delta^{\frac{2(1-d)}{d-1+2\alpha}}.$$
(2.6)

Теорема 5 Погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2} = (2\pi)^{\frac{(d-1)(d-2)}{2(d-1+2\alpha)}} \delta^{\frac{2\alpha}{d-1+2\alpha}}.$$

Методы

$$\widehat{m_a(g)}(\sigma\vartheta) = (2\pi)^{(1-d)/2} a(\sigma) \widehat{g_{\vartheta}}(\sigma), \quad \sigma \in [0, \infty), \quad \vartheta \in \mathbb{S}^{d-1},$$

 $\operatorname{rde} g_{\vartheta}(s) = g(\vartheta, s),$

$$a(\sigma) = \left(\frac{\widehat{\lambda}_2}{\widehat{\lambda}_1 x(\sigma) + \widehat{\lambda}_2} + \varepsilon(\sigma) \frac{\sigma^{\alpha} \sqrt{\widehat{\lambda}_1 \widehat{\lambda}_2}}{\widehat{\lambda}_1 x(\sigma) + \widehat{\lambda}_2} \sqrt{x(\sigma) \widehat{\lambda}_1 + \widehat{\lambda}_2 - y(\sigma)}\right) \chi_{[0,\infty)}(\sigma),$$
(2.7)

 $\|\varepsilon(\sigma)\|_{L_{\infty}(\mathbb{R})} \leq 1$, являются оптимальными.

Доказательство. Рассмотрим двойственную задачу

$$||f||_{L_2(\mathbb{R}^d)}^2 \to \sup, \quad ||(-\Delta)^{\alpha/2}f||_{L_2(\mathbb{R}^d)}^2 \leqslant 1, \quad ||Rf||_{L_2(Z)}^2 \leqslant \delta^2.$$

Её решение даёт оценку снизу для квадрата погрешности оптимального восстановления в силу следующей цепочки неравенств (в которой m — произвольный метод)

$$e(\delta,m) = \sup_{\substack{f \in W, g \in L_2(Z) \\ \|Rf - g\|_{L_2(Z)} \leqslant \delta}} \|f - m(g)\|_{L_2(\mathbb{R}^d)} \geqslant \sup_{\substack{f \in W \\ \|Rf\|_{L_2(Z)} \leqslant \delta}} \|f - m(0)\|_{L_2(\mathbb{R}^d)} \geqslant$$

$$\geqslant \sup_{\substack{f \in W \\ \|Rf\|_{L_2(Z)} \leqslant \delta}} \frac{\|f - m(0)\|_{L_2(\mathbb{R}^d)} + \| - f - m(0)\|_{L_2(\mathbb{R}^d)}}{2} \geqslant \sup_{\substack{f \in W \\ \|Rf\|_{L_2(Z)} \leqslant \delta}} \|f\|_{L_2(\mathbb{R}^d)}.$$

Найдём решение двойственной задачи. Используя лемму 1, перепишем двойственную задачу.

$$||f||_{L_2(\mathbb{R}^d)}^2 = ||\widehat{f}||_{L_2(\mathbb{R}^d)}^2 = \int_0^\infty \sigma^{d-1} \int_{\mathbb{S}^{d-1}} |\widehat{f}(\sigma \vartheta)|^2 d\vartheta d\sigma;$$

$$\begin{split} \|(-\Delta)^{\alpha/2}f\|_{L_2(\mathbb{R}^d)}^2 &= \|\widehat{(-\Delta)^{\alpha/2}}f\|_{L_2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} |\xi|^{2\alpha} |\widehat{f}(\xi)|^2 d\xi = \\ &= \int_0^\infty \sigma^{d-1+2\alpha} \int_{\mathbb{S}^{d-1}} |\widehat{f}(\sigma\vartheta)|^2 d\vartheta d\sigma; \end{split}$$

$$\begin{split} \|Rf\|_{L_2(Z)}^2 &= \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |Rf(\vartheta,s)|^2 ds d\vartheta = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |\widehat{R_\vartheta f}(\sigma)|^2 d\sigma d\vartheta = \\ &= (2\pi)^{d-1} \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |\widehat{f}(\sigma\vartheta)|^2 d\sigma d\vartheta = (2\pi)^{d-1} \int_{\mathbb{R}} \int_{\mathbb{S}^{d-1}} |\widehat{f}(\sigma\vartheta)|^2 d\vartheta d\sigma. \end{split}$$

Положим $\int_{\mathbb{S}^{d-1}} |\widehat{f}(\sigma \vartheta)|^2 d\vartheta d\sigma = d\mu(\sigma)$ и рассмотрим следующую задачу на мерах

$$\int_0^\infty \sigma^{d-1} d\mu \to \max, \quad \int_0^\infty \sigma^{d-1+2\alpha} d\mu \leqslant 1, \quad (2\pi)^{d-1} \int_{\mathbb{R}} d\mu \leqslant \delta^2. \tag{2.8}$$

Ее решение не меньше решения двойственной задачи, т.к. максимум в ней берется по большему множеству. Найдем ее решение и предоставим

последовательность допустимых в двойственной задаче функций, на которой двойственная задача достигает того же значения. Таким образом, найдем решение двойственной задачи.

Запишем функцию Лагранжа задачи (2.8),

$$L(\mu, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 +$$

$$+ (2\pi)^{d-1} \int_{\mathbb{R}} \left(\lambda_1 (2\pi)^{1-d} \sigma^{d-1+2\alpha} \chi_{[0,\infty)}(\sigma) + \lambda_2 - (2\pi)^{1-d} \sigma^{d-1} \chi_{[0,\infty)}(\sigma) \right) d\mu.$$

Рассмотрим функцию, заданную параметрически уравнениями (2.5) или

$$y(x) = (2\pi)^{\frac{1-d+(d-1)^2}{(d-1+2\alpha)}} x^{\frac{(d-1)}{(d-1+2\alpha)}}.$$

Она является вогнутой при $\alpha \geqslant 0$. Уравнение касательной к графику функции y(x) в точке $1/\delta^2$ (соответствующее значение σ равно $\sigma^* = [(2\pi)^{d-1}\delta^{-2}]^{1/(d-1+2\alpha)})$ имеет вид $y = \widehat{\lambda}_1 x + \widehat{\lambda}_2$, где $\widehat{\lambda}_1$, $\widehat{\lambda}_2$ определены в (2.6). Отсюда имеем $\widehat{\lambda}_1 x(\sigma) + \widehat{\lambda}_2 - y(\sigma) \geqslant 0$ и $L(\mu, \widehat{\lambda}_1, \widehat{\lambda}_2) \geqslant -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$.

Рассмотрим меру

$$d\mu^* = \frac{\delta^2}{(2\pi)^{d-1}} D\left(\sigma - (2\pi)^{\frac{d-1}{d-1+2\alpha}} (\delta^{-2})^{\frac{1}{d-1+2\alpha}}\right) d\sigma,$$

где D — дельта-функция. Она допустима в задаче (2.8), удовлетворяет условиям дополняющей нежёсткости

$$\widehat{\lambda}_1 \left(\int_0^\infty \sigma^{d-1+2\alpha} d\mu^* - 1 \right) + \widehat{\lambda}_2 \left((2\pi)^{d-1} \int_{\mathbb{R}} d\mu^* - \delta^2 \right) = 0$$

и минимизирует функцию Лагранжа, так как $L(\mu^*, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$. Отсюда следует, что она доставляет экстремум в задаче (2.8), решение которой равно $\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2$.

Рассмотрим дельта-образную последовательность функций из $L_2(\mathbb{R}^d)$:

$$\frac{n}{\sqrt{\pi}}e^{-(n\sigma)^2} \longrightarrow D(\sigma).$$

Обозначим $g_n(\sigma) = \frac{\delta^2}{(2\pi)^{d-1}} \frac{n}{\sqrt{\pi}} e^{-(n(\sigma-\sigma^*))^2}$, тогда $g_n(\sigma) \longrightarrow \frac{\delta^2}{(2\pi)^{d-1}} D(\sigma-\sigma^*)$. Обозначим $c_n = \max\left(1, \int\limits_0^\infty \sigma^{d-1+2\alpha} g_n(\sigma) d\sigma\right)$ и $u_n(\sigma) = \frac{g_n(\sigma)}{c_n}$. В силу того, что

$$\int_0^\infty \sigma^{d-1+2\alpha} g_n(\sigma) d\sigma \longrightarrow \int_{-\infty}^\infty \chi_{[0,\infty)}(\sigma) \sigma^{d-1+2\alpha} \frac{\delta^2}{(2\pi)^{d-1}} D(\sigma - \sigma^*) d\sigma = 1,$$

имеем
$$u_n(\sigma) \longrightarrow \frac{\delta^2}{(2\pi)^{d-1}} D(\sigma - \sigma^*).$$

Положим $\widehat{f}_n(\sigma\vartheta)=\frac{u_n(\sigma)}{|\mathbb{S}^{d-1}|}$, тогда последовательность $\{f_n\}$ допустима в двойственной задаче, так как

$$\|(-\Delta)^{\alpha/2}f\|_{L_2(\mathbb{R}^d)}^2 = \int_0^\infty \sigma^{d-1+2\alpha} u_n(\sigma) d\sigma = \frac{1}{c_n} \int_0^\infty \sigma^{d-1+2\alpha} g_n(\sigma) d\sigma \leqslant 1,$$

$$||Rf||_{L_2(Z)}^2 = (2\pi)^{d-1} \int_{-\infty}^{\infty} u_n(\sigma) d\sigma = \frac{1}{c_n} (2\pi)^{d-1} \int_{-\infty}^{\infty} g_n(\sigma) d\sigma = \frac{1}{c_n} \delta^2 \leqslant \delta^2.$$

Значение двойственной задачи на последовательности $\{f_n\}$ совпадает с решением задачи (2.8)

$$||f||_{L_2(\mathbb{R}^d)}^2 = \int_0^\infty \sigma^{d-1} u_n(\sigma) d\sigma = \frac{1}{c_n} \int_0^\infty \sigma^{d-1} g_n(\sigma) d\sigma \longrightarrow$$

$$\longrightarrow (2\pi)^{\frac{(d-1)(d-2)}{d-1+2\alpha}} \delta^{\frac{4\alpha}{d-1+2\alpha}} = \widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2,$$

откуда следует, что на $\{f_n\}$ достигается решение двойственной задачи.

Рассмотрим метод $\widehat{m_a(g)}(\sigma\vartheta) = (2\pi)^{(1-d)/2}a(\sigma)\widehat{g_\vartheta}(\sigma)$. Запишем его

погрешность

$$||f - m_a(g)||_{L_2(\mathbb{R}^d)}^2 = ||\widehat{f} - \widehat{m_a(g)}||_{L_2(\mathbb{R}^d)}^2 =$$

$$= \int_{\mathbb{S}^{d-1}} \int_0^\infty \sigma^{d-1} |\widehat{f}(\sigma \vartheta) - (2\pi)^{(1-d)/2} a(\sigma) \widehat{g_\vartheta}(\sigma)|^2 d\sigma d\vartheta =$$

$$= \int_{\mathbb{S}^{d-1}} \int_0^\infty \sigma^{d-1} \left| a(\sigma) (2\pi)^{\frac{1-d}{2}} \left(\widehat{g_\vartheta}(\sigma) - (2\pi)^{\frac{d-1}{2}} \widehat{f}(\sigma \vartheta) \right) + \widehat{f}(\sigma \vartheta) (a(\sigma) - 1) \right|^2 d\sigma d\vartheta.$$

Применим неравенство Коши–Буняковского $|xy|^2 \leqslant |x|^2|y|^2$ к векторам

$$x = \left((2\pi)^{(1-d)/2} \frac{a(\sigma)}{\sqrt{\widehat{\lambda}_2}}, \sigma^{\frac{1-d-2\alpha}{2}} \frac{(a(\sigma)-1)}{\sqrt{\widehat{\lambda}_1}} \right),$$

$$y = \left(\left(\widehat{g_{\vartheta}}(\sigma) - (2\pi)^{(d-1)/2} \widehat{f}(\sigma\vartheta) \right) \sqrt{\widehat{\lambda}_2}, \sigma^{\frac{d-1+2\alpha}{2}} \sqrt{\widehat{\lambda}_1} \widehat{f}(\sigma\vartheta) \right).$$

Получим

$$||f - m_a(g)||_{L_2(\mathbb{R}^d)}^2 \leqslant$$

$$\leqslant \int_{\mathbb{S}^{d-1}} \int_0^\infty A(\sigma) \left(\sigma^{d-1+2\alpha} \widehat{\lambda}_1 |\widehat{f}(\sigma \vartheta)|^2 + \left| \widehat{g_{\vartheta}}(\sigma) - (2\pi)^{(d-1)/2} \widehat{f}(\sigma \vartheta) \right|^2 \widehat{\lambda}_2 \right) d\sigma d\vartheta,$$

где

$$A(\sigma) = \sigma^{d-1} \left((2\pi)^{(1-d)} \frac{a^2(\sigma)}{\widehat{\lambda}_2} + \sigma^{1-d-2\alpha} \frac{(a(\sigma)-1)^2}{\widehat{\lambda}_1} \right).$$

Условие (2.7) эквивалентно $A(\sigma) \leqslant 1$, $\sigma \in [0,\infty)$, откуда $\|f-m_a(g)\|_{L_2(\mathbb{R}^d)}^2 \leqslant \widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2$.

Следствие 3 В

условиях

теоремы

5

методы

$$\widehat{m_a(g)}(\sigma\vartheta) = (2\pi)^{(1-d)/2}a(\sigma)\widehat{g_\vartheta}(\sigma), \ \epsilon\partial e$$

$$a(\sigma) = \begin{cases} 1 &, \sigma \in [0, 2\pi \widehat{\lambda}_{2}^{(1-d)}], \\ \left(\frac{\widehat{\lambda}_{2}}{\widehat{\lambda}_{1}x(\sigma) + \widehat{\lambda}_{2}} + \varepsilon(\sigma) \frac{\sigma^{\alpha} \sqrt{\widehat{\lambda}_{1}\widehat{\lambda}_{2}}}{\widehat{\lambda}_{1}x(\sigma) + \widehat{\lambda}_{2}} \sqrt{x(\sigma)} \widehat{\lambda}_{1} + \widehat{\lambda}_{2} - y(\sigma) \right) &, \sigma \in (2\pi \widehat{\lambda}_{2}^{(1-d)}, \widehat{\lambda}_{1}^{\frac{-1}{2\alpha}}), \\ 0 &, \sigma \in [\widehat{\lambda}_{1}^{\frac{-1}{2\alpha}}, \infty). \end{cases}$$

 $\varepsilon(\sigma)\in L_\infty(\mathbb{R})$ и принимает значения на отрезке [-1,1], являются оптимальными.

Доказательство. Положим $a(\sigma)=1$ в неравенстве $A(\sigma)\leqslant 1$, получим, что оно выполнено при $\sigma\leqslant 2\pi\widehat{\lambda}_2^{(1-d)}$. Аналогично, положим $a(\sigma)=0$, тогда $A(\sigma)\leqslant 1$ выполнено при $\sigma\geqslant \widehat{\lambda}_1^{-1/2\alpha}$.

Функция a выполняет роль фильтра, определяющего соотношение между объёмом полезной информации и погрешностью, с которой она задана. Из следствия видно, что при достаточно малых σ информация \hat{g} не нуждается в фильтрации, а при достаточно больших σ фильтр можно выбрать равным 0, т.е. соответствующий объем информации не влияет на погрешность оптимального восстановления. Таким образом, выбрав фильтр a как в следствии 3, получим, что восстановленная функция будет иметь ограниченный спектр.

Следствие 4 Для функции $f \in L_2(\mathbb{R}^d)$ имеет место точное неравенство

$$||f||_{L_2(\mathbb{R}^d)} \leqslant (2\pi)^{\frac{(d-1)(d-2)}{2(d-1+2\alpha)}} ||Rf||_{L_2(Z)}^{\frac{2\alpha}{d-1+2\alpha}} ||(-\Delta)^{\alpha/2} f||_{L_2(\mathbb{R}^d)}^{\frac{d-1}{d-1+2\alpha}}, \quad \alpha > 0.$$

Доказательство. Из теоремы 5 следует $\|u\|_{L_2(\mathbb{R}^d)} \leqslant (2\pi)^{\frac{(d-1)(d-2)}{2(d-1+2\alpha)}} \delta^{\frac{2\alpha}{d-1+2\alpha}},$ при ограничениях $\|Ru\|_{L_2(Z)} = \delta$ и $\|(-\Delta)^{\alpha/2}u\|_{L_2(\mathbb{R}^d)} = 1.$ Положив $u(x) = \frac{f(x)}{\|(-\Delta)^{\alpha/2}f\|_{L_2(\mathbb{R}^d)}},$ $f \neq 0$, получим

$$\|f\|_{L_2(\mathbb{R}^d)} \leqslant (2\pi)^{\frac{(d-1)(d-2)}{2(d-1+2\alpha)}} \|Rf\|_{L_2(Z)}^{\frac{2\alpha}{d-1+2\alpha}} \|(-\Delta)^{\alpha/2} f\|_{L_2(\mathbb{R}^d)}^{\frac{d-1}{d-1+2\alpha}}.$$

2.3. Оптимальное восстановление функций на сфере по неточно заданному преобразованию Минковского-Функа

В этом разделе рассматриваются функции, заданные на сфере $\mathbb{S}^{d-1}, d \geq 3$. По лемме 5 для функции $f \in L_2(\mathbb{S}^{d-1})$ верно представление

$$f(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} f_{kl} Y_k^l(x).$$

Рассмотрим оператор $(-\Delta_S)^{\alpha/2}$ (сферический Лапласиан), задаваемый формулой

$$(-\Delta_S)^{\alpha/2} f(x) = \sum_{l=0}^{\infty} d_l^{\alpha/2} \sum_{k=1}^{N(l)} f_{kl} Y_k^l(x), \quad d_l = l(l+d-2), \quad \alpha > 0.$$

Обозначим через W следующий класс функций

$$W = \{ f \in L_2(\mathbb{S}^{d-1}) : \| (-\Delta_S)^{\alpha/2} f \|_{L_2(\mathbb{S}^{d-1})} \le 1 \}.$$

Пусть для каждой функции $f \in W$ мы знаем ее преобразование Минковского-Функа, заданное с погрешностью. А именно, известна функция $g \in L_2(\mathbb{S}^{d-1})$, такая что $\|Mf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta$. По этой информации требуется восстановить функцию f. Назовем методом восстановления произвольное отображение $m: L_2(\mathbb{S}^{d-1}) \to L_2(\mathbb{S}^{d-1})$. Погрешностью метода называется величина

$$e(\delta, m) = \sup_{\substack{x \in W, g \in L_2(\mathbb{S}^{d-1}) \\ \|Mf - g\|_{L_2(\mathbb{S}^{d-1})} \le \delta}} \|f - m(g)\|_{L_2(\mathbb{S}^{d-1})}.$$

Из всего множества методов нас будут интересовать те, на которых достигается погрешность оптимального восстановления

$$E(\delta) = \inf_{m: L_2(\mathbb{S}^{d-1}) \to L_2(\mathbb{S}^{d-1})} e(\delta, m).$$

Положим $\widehat{\lambda}_1=\frac{1}{d_1^{\alpha}}, \quad \widehat{\lambda}_2=\frac{1}{m_0^2},$ где m_l - собственные числа оператора Минковского-Функа, определенные в (5).

Теорема 6 Погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

 $Memod\ m(g) = \frac{g_0}{m_0} Y^0,\ rde\ g_0 = < g, Y^0 >_{L_2(\mathbb{S}^{d-1})}$ является оптимальным.

Доказательство. Рассмотрим двойственную задачу

$$||f|| \to \max, \quad ||(-\Delta_S)^{\alpha/2} f||_{L_2(\mathbb{S}^{d-1})} \le 1, \quad ||Mf||_{L_2(\mathbb{S}^{d-1})} \le \delta.$$
 (2.9)

Перейдем к квадратам функционала и ограничений и разложим функции в ряд по сферическим гармоникам. Воспользуемся тем, что сферические гармоники являются собственными функциями оператора Минковского-Функа. Тогда после применения равенства Парсеваля, получим следующую задачу

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} f_{kl}^2 \to \max, \quad \sum_{l=0}^{\infty} d_l^{\alpha} \sum_{k=1}^{N(l)} f_{kl}^2 \le 1, \quad \sum_{l=0}^{\infty} m_l^2 \sum_{k=1}^{N(l)} f_{kl}^2 \le \delta^2.$$

Ее функция Лагранжа имеет вид

$$L(u, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{i=1}^{\infty} u_i (\lambda_1 d_{2i}^{\alpha} + \lambda_2 m_i^2 - 1) + u_0 (\lambda_2 m_0^2 - 1),$$

где мы обозначили $u_l = \sum_{k=1}^{N(l)} f_{kl}^2$ и подставили $d_0 = 0$. Заметим, что $L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) \ge -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$ для всех допустимых u. Рассмотрим элемент

$$u^* = \begin{cases} u_0^* = \delta^2 / m_0^2 \\ u_1^* = 1 / d_1^{\alpha} \\ u_l^* = 0, \qquad l > 1. \end{cases}$$

Он допустим в двойственной задаче, удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{i=0}^{\infty} d_l^{\alpha} u_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{i=0}^{\infty} m_l^2 u_l - \delta^2 \right) = 0$$

и минимизирует функцию Лагранжа, т.к. $L(u^*, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$. Отсюда следует, что u^* является точкой максимума в двойственной задаче, решение которой равно $\sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}$. Рассмотрим метод $m(g) = \frac{g_0}{m_0} Y^0$, где $g_0 = \langle g, Y^0 \rangle_{L_2(\mathbb{S}^{d-1})}$. Для его погрешности, имеем

$$||f - m(g)||_{L_2(\mathbb{S}^{d-1})}^2 = \left| (f_0 - \frac{g_0}{m_0})Y^0 + \sum_{l=1}^{\infty} \sum_{k=1}^{N(l)} f_{kl} Y_k^l \right|_{L_2(\mathbb{S}^{d-1})}^2$$

$$= (f_0 - \frac{g_0}{m_0})^2 + \sum_{l=1}^{\infty} \sum_{k=1}^{N(l)} f_{kl}^2 = \frac{1}{m_0^2} (m_0 f_0 - g_0)^2 + \sum_{l=1}^{\infty} \sum_{k=1}^{N(l)} f_{kl}^2 \le \widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1 \sum_{l=1}^{\infty} \sum_{k=1}^{N(l)} d_l^{\alpha} f_{kl}^2$$

$$\le \widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1.$$

Заметим, что практически вся информация о преобразовании Минковского-Функа в этом случае оказывается лишней, т.к. в задаче существенным является только ограничение $(m_0 f_0 - g_0)^2 \leq \delta^2$. Более содержательный результат получается при рассмотрении класса четных

функций в $L_2(\mathbb{S}^{d-1})$, обозначаемого $L_2^+(\mathbb{S}^{d-1})$. На нем преобразование Минковского-Функа имеет пустое ядро. Для этого пространства функций верны все рассуждения леммы 5, которая в данном случае будет иметь вид (см. [32])

$$L_2^+(\mathbb{S}^{d-1}) = \sum_{k=0}^{\infty} H_{2k}.$$

Рассмотрим множество точек плоскости, задаваемых формулами

$$x_l = \frac{d_{2l}^{\alpha}}{m_{2l}^2}$$
 , $y_l = \frac{1}{m_{2l}^2}$,

где m_l - собственные числа оператора Минковского-Функа, определенные в (5). Пусть $x_s < \delta^{-2} \le x_{s+1}, \ s \ge 0$, тогда положим

$$\widehat{\lambda}_1 = \frac{y_{s+1} - y_s}{x_{s+1} - x_s}, \quad \widehat{\lambda}_2 = \frac{y_s x_{s+1} - y_{s+1} x_s}{x_{s+1} - x_s}.$$

Теорема 7 Погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m(g)(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} a_l \frac{g_{k2l}}{m_{2l}} Y_k^{2l}(x), \qquad (2.10)$$

где $g_{k,l}=< g, Y_k^l>_{L_2(\mathbb{S}^{d-1})},$ а числа a_l удовлетворяют условиям

$$a_{l} = \frac{\widehat{\lambda}_{2}}{\widehat{\lambda}_{1}x_{l} + \widehat{\lambda}_{2}} + \epsilon_{l} \frac{\sqrt{\widehat{\lambda}_{1}\widehat{\lambda}_{2}}}{\widehat{\lambda}_{1}x_{l} + \widehat{\lambda}_{2}} \sqrt{\frac{x_{l}}{y_{l}}} \sqrt{x_{l}\widehat{\lambda}_{1} + \widehat{\lambda}_{2} - y_{l}}, \qquad (2.11)$$

 $\epsilon_l - n$ роизвольные числа из отрезка [-1;1], являются оптимальными.

Доказательство. Двойственная задача в данном случае имеет вид

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} f_{k2l}^2 \to \max, \quad \sum_{l=0}^{\infty} d_{2l}^{\alpha} \sum_{k=1}^{N(l)} f_{k2l}^2 \le 1, \quad \sum_{l=0}^{\infty} m_{2l}^2 \sum_{k=1}^{N(l)} f_{k2l}^2 \le \delta^2,$$

а ее функция Лагранжа

$$L(u, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=0}^{\infty} \frac{u_{2l}}{m_{2l}^2} \left(\lambda_1 \frac{d_{2l}^{\alpha}}{m_{2l}^2} + \lambda_2 - \frac{1}{m_{2l}^2} \right) =$$
$$-\lambda_1 - \lambda_2 \delta^2 + \sum_{l=0}^{\infty} \frac{u_{2l}}{m_{2l}^2} \left(\lambda_1 x_l + \lambda_2 - y_l \right),$$

где мы положили $u_{2l} = \sum_{l=0}^{\infty} f_{k2l}^2$.

Имеем,

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} = \frac{\frac{(l+(d-1)/2)^2}{(l+1/2)^2} - 1}{\frac{(2l+2)^{\alpha}(2l+d)^{\alpha}(l+(d-1)/2)^2}{(l+1/2)^2} - (2l)^{\alpha}(2l+d-2)^{\alpha}}$$
$$= \frac{d-2}{2^{\alpha}} \frac{l+d/4}{(l+(d-1)/2)^2(l+1)^{\alpha}(2l+d)^{\alpha} - (l+\frac{1}{2})^2l^{\alpha}(2l+d-2)^{\alpha}}.$$

Вычислив производную этого выражения, получим в числителе дроби следующее выражение

$$(l(2l+d-2))^{\alpha-1}[l(2l+d-2)(l+\frac{d-1}{2})(l+1/2) + \alpha(l+\frac{d}{4})(l+\frac{1}{2})^2(4l+d-2)]$$

$$-((l+1)(2l+d))^{\alpha-1}[(l+1)(2l+d)(l+\frac{d-1}{2})(l+1/2) + \alpha(l+\frac{d}{4})(l+\frac{d-1}{2})^2(4l+d+2)]$$

которое очевидно отрицательно при $\alpha \geq 1$. Покажем, что это выражение также отрицательно при $0 < \alpha < 1$. Для этого при фиксированном l > 0 рассмотрим функции

$$u(\alpha) = \left(\frac{(l+1)(2l+d)}{l(2l+d-2)}\right)^{\alpha-1},$$

$$v(\alpha) = \frac{l(2l+d-2)(l+\frac{d-1}{2})(l+1/2) + \alpha(l+\frac{d}{4})(l+\frac{1}{2})^2(4l+d-2)}{(l+1)(2l+d)(l+\frac{d-1}{2})(l+1/2) + \alpha(l+\frac{d}{4})(l+\frac{d-1}{2})^2(4l+d+2)}.$$

Имеем u(0)=v(0), функция $u(\alpha)$ монотонно возрастает, а функция $v(\alpha)$ монотонно убывает, в чем нетрудно убедиться, вычислив ее производную. Тогда при $0<\alpha<1$ верно $u(\alpha)>v(\alpha)$, откуда следует требуемое утверждение. Получили, что $\frac{y_{l+1}-y_l}{x_{l+1}-x_l}$ монотонно убывает. Что, в свою очередь, означает, что прямая, соединяющая любые две соседние точки множества $\{(x_l,y_l)\}_{l=0}^\infty$ является опорной ко всему множеству. В частности, для прямой, соединяющей x_s и x_{s+1} , имеем $\widehat{\lambda}_1 x_l + \widehat{\lambda}_2 - y_l \geq 0$. Тогда $L(u,\widehat{\lambda}_1,\widehat{\lambda}_2) \geq -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2$.

Рассмотрим набор $\widehat{u} = (u_0, u_2, ...),$

$$\widehat{u}_{2l} = \begin{cases} 0, & l \notin \{s, s+1\}, \\ \frac{\delta^2 x_{s+1} - 1}{x_{s+1} - x_s}, & l = s, \\ \frac{1 - \delta^2 x_s}{x_{s+1} - x_s}, & l = s+1. \end{cases}$$
(2.12)

Он допустим в двойственной задаче, удовлетворяет условиям дополняющей нежесткости

$$\widehat{\lambda}_1 \left(\sum_{l=0}^{\infty} d_{2l}^{\alpha} u_{2l} - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{\infty} m_{2l}^2 u_{2l} - \delta^2 \right) = 0$$

и доставляет минимум функции Лагранжа

$$\min_{u} L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{u}, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2.$$

Отсюда следует, что \widehat{u} является точкой максимума в двойственной задаче, решение которой равно $\sqrt{\widehat{\lambda}_1+\widehat{\lambda}_2\delta^2}.$

Рассмотрим метод (2.10) и его погрешность

$$||f - m(g)||_{L_2(\mathbb{S}^{d-1})}^2 = \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \left(f_{k2l} - a_l \frac{g_{k2l}}{m_{2l}} \right)^2 =$$

$$\sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \left(\frac{a_l}{m_{2l}} (g_{k2l} - m_{2l} f_{k2l}) + f_{k2l} (a_l - 1) \right)^2.$$

Применяя неравенство Коши-Буняковского к векторам

$$x = (\frac{a_l}{\sqrt{\widehat{\lambda}_2} m_{2l}}, \frac{a_l - 1}{d_{2l}^{\alpha/2} \sqrt{\widehat{\lambda}_1}}), \quad y = ((g_{k2l} - m_{2l} f_{k2l}) \sqrt{\widehat{\lambda}_2}, d_{2l}^{\alpha/2} f_{k2l} \sqrt{\widehat{\lambda}_1}),$$

получим

$$||f - m(g)||_{L_{2}(\mathbb{S}^{d-1})}^{2} \leq \sum_{l=0}^{\infty} \sum_{k=1}^{N(l)} \left(\frac{a_{l}^{2}}{\widehat{\lambda}_{2} m_{2l}^{2}} + \frac{(a_{l} - 1)^{2}}{d_{2l}^{\alpha} \widehat{\lambda}_{1}} \right) \left((g_{k2l} - m_{2l} f_{k2l})^{2} \widehat{\lambda}_{2} + d_{2l}^{\alpha} f_{k2l}^{2} \widehat{\lambda}_{1} \right)$$

$$\leq \widehat{\lambda}_{1} + \widehat{\lambda}_{2} \delta^{2},$$

т.к. условие (2.11) эквивалентно

$$\left(\frac{a_l^2}{\widehat{\lambda}_2 m_{2l}^2} + \frac{(a_l - 1)^2}{d_{2l}^{\alpha} \widehat{\lambda}_1}\right) \le 1.$$

Глава 3

Оптимальное восстановление производной функции и одно неравенство для производных на отрезке

Рассматривается задача оптимального восстановления k-й производной функции на отрезке, когда сама функция известна с некоторой погрешностью в среднеквадратичной метрике. Как следствие решения задачи оптимального восстановления доказано неравенство для производных на отрезке. Показано, что константа в данном неравенстве может быть уменьшена на некоторых подмножествах рассматриваемого класса функций.

Рассмотрим пространство $L_2(\omega_{\alpha},[-1,1]),$ состоящее из функций, измеримых на отрезке [-1,1], для которых

$$||x||_{L_2(\omega_\alpha,[-1,1])} = \left(\int_{-1}^1 w_\alpha(t)|x(t)|^2 dt\right)^{1/2} < \infty, \quad \omega_\alpha(t) = (1-t^2)^\alpha.$$

Обозначим через W класс, состоящий из функций $x \in L_2([-1,1])$, таких что $x^{(r-1)}$ абсолютно непрерывна на отрезке [-1,1] и $\|x^{(r)}\|_{L_2(w_r,[-1,1])} \le 1$, $r \in \mathbb{N}$. Пусть для каждой функции $x \in W$ известна функция $g \in L_2([-1,1])$, такая что $\|x-g\|_{L_2([-1,1])} \le \delta$, $\delta > 0$. По этой информации требуется восстановить k—ую производную x, как элемент пространства $L_2(\omega_k,[-1,1])$, где $0 \le k < r$. Методом восстановления будем называть произвольное отображение $m: L_2([-1,1]) \to L_2(w_k,[-1,1])$. Определим погрешность метода

$$e(\delta, m) = \sup_{\substack{x \in W, \quad g \in L_2([-1,1]) \\ \|x - g\|_{L_2([-1,1])} \le \delta}} \|x^{(k)} - m(g)\|_{L_2(w_k,[-1,1])}.$$

Погрешностью оптимального восстановления называется величина

$$E(\delta) = \inf_{m: L_2([-1,1]) \to L_2(w_k, [-1,1])} e(\delta, m).$$

Оптимальными методами называются те, на которых достигается погрешность оптимального восстановления.

Рассмотрим систему полиномов Якоби $\{P_l^{\alpha}\}_{l=0}^{\infty}, \ \alpha > -1,$ ортогональных на отрезке [-1,1] с весом $(1-t^2)^{\alpha}$. Для них ([27])

$$\int_{-1}^{1} (1 - t^2)^{\alpha} P_l^{\alpha}(t) P_k^{\alpha}(t) dt = \begin{cases} 0, & k \neq l \\ \frac{2^{2\alpha + 1}}{2l + 2\alpha + 1} \frac{(l + \alpha)!^2}{(l + 2\alpha)! l!}, & k = l. \end{cases}$$

Положив $Y_l^{\alpha}(t) = \sqrt{\frac{2l+2\alpha+1}{2^{2\alpha+1}}\frac{(l+2\alpha)!l!}{(l+\alpha)!^2}}P_l^{\alpha}(t)$, получим ортонормированный базис $\{Y_l^{\alpha}\}_{l=0}^{\infty}$ в пространстве $L_2(w_{\alpha},[-1,1]),\,\alpha>-1$.

Рассмотрим множество точек $\{(x_l,y_l)\}_{l=k}^{\infty}$, заданное формулами

$$x_{l} = \begin{cases} 0, & k \leq l < r, \\ \frac{(l+r)!}{(l-r)!}, & l \geq r, \end{cases} \quad y_{l} = \frac{(l+k)!}{(l-k)!}.$$

Пусть $x_s < \delta^{-2} \le x_{s+1}, \ s \ge r-1,$ тогда положим

$$\hat{\lambda}_1 = \frac{y_{s+1} - y_s}{x_{s+1} - x_s}, \quad \hat{\lambda}_2 = \frac{y_s x_{s+1} - y_{s+1} x_s}{x_{s+1} - x_s}.$$
 (3.1)

Далее будет показано, что $\widehat{\lambda}_1 > 0$ и $\widehat{\lambda}_2 > 0$.

Теорема 8 Погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m_a(g)(x) = \sum_{l=k}^{r-1} g_l \sqrt{\frac{(l+k)!}{(l-k)!}} Y_{l-k}^k(t) + \sum_{l=r}^{\infty} a_l g_l \sqrt{\frac{(l+k)!}{(l-k)!}} Y_{l-k}^k(t),$$
(3.2)

где

$$g_l = \int_{-1}^{1} g(t)Y_l^0(t)dt, \tag{3.3}$$

$$a_{l} = \frac{\widehat{\lambda}_{2}}{\widehat{\lambda}_{1}x_{l} + \widehat{\lambda}_{2}} + \epsilon_{l} \frac{\sqrt{\widehat{\lambda}_{1}\widehat{\lambda}_{2}}}{\widehat{\lambda}_{1}x_{l} + \widehat{\lambda}_{2}} \sqrt{\frac{x_{l}}{y_{l}}} \sqrt{x_{l}\widehat{\lambda}_{1} + \widehat{\lambda}_{2} - y_{l}}, \tag{3.4}$$

 ϵ_l — произвольные числа из отрезка [-1;1], являются оптимальными.

Доказательство. Рассмотрим экстремальную задачу

$$||x^{(k)}||_{L_2(w_k,[-1,1])}^2 \to \max, \quad ||x^{(r)}||_{L_2(w_r,[-1,1])}^2 \le 1, \quad ||x||_{L_2([-1,1])}^2 \le \delta^2.$$
 (3.5)

Ее решение оценивает снизу погрешность оптимального восстановления. Действительно, для произвольного метода m

$$e(\delta, m) = \sup_{\substack{x \in W, \ g \in L_2([-1,1]) \\ \|x-g\|_{L_2([-1,1])} \le \delta}} \|m(g) - x^{(k)}\|_{L_2(w_k,[-1,1])} \ge$$

$$\sup_{\substack{x \in W \\ \|x\|_{L_2([-1,1])} \le \delta}} \|m(0) - x^{(k)}\|_{L_2(w_k,[-1,1])} \ge$$

$$\sup_{\substack{x \in W \\ \|x\|_{L_2([-1,1])} \le \delta}} \frac{\|m(0) - x^{(k)}\|_{L_2(w_k,[-1,1])} + \| - m(0) - x^{(k)}\|_{L_2(w_k,[-1,1])}}{2} \ge$$

$$\sup_{\substack{x \in W \\ \|x\|_{L_2([-1,1])} \le \delta}} \|x^{(k)}\|_{L_2(w_k,[-1,1])},$$

откуда

$$E(\delta) \ge \sup_{\substack{x \in W \\ \|x\|_{L_2([-1,1])} \le \delta}} \|x^{(k)}\|_{L_2(w_k,[-1,1])}.$$

Рассмотрим разложение функции x по базису $\{Y_l^0\}_{l=0}^\infty$, которое имеет вид $x(t)=\sum_{l=0}^\infty c_l Y_l^0(t)$. Используя формулу

$$\frac{d^k}{dt^k} P_l^{\alpha}(t) = \frac{(2\alpha + l + k)!}{2^k (2\alpha + l)!} P_{l-k}^{\alpha + k}(t),$$

получим $x^{(k)}(t) = \sum_{l=k}^{\infty} c_l \sqrt{\frac{(l+k)!}{(l-k)!}} Y_{l-k}^k(t)$, т.е. разложение функции $x^{(k)}$ по соответствующему базису в пространстве $L_2(w_k,[-1,1])$. Аналогичное

разложение имеет место для функции $x^{(r)}$. Вводя обозначение $c_l^2=u_l$ и используя равенство Парсеваля, перепишем задачу (3.5) в виде

$$\sum_{l=k}^{\infty} u_l \frac{(l+k)!}{(l-k)!} \to \max, \quad \sum_{l=r}^{\infty} u_l \frac{(l+r)!}{(l-r)!} \le 1, \quad \sum_{l=0}^{\infty} u_l \le \delta^2, \quad u_l \ge 0, \quad l = 0, \dots$$
(3.6)

Запишем ее функцию Лагранжа, предварительно положив $u_l=0,\ldots,k-1$, т.к. эти коэффициенты не входят в функционал,

$$L(u, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=k}^{\infty} u_l \left(-\frac{(l+k)!}{(l-k)!} + \lambda_2 \right) + \sum_{l=r}^{\infty} \lambda_1 u_l \frac{(l+r)!}{(l-r)!}$$

$$= -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=k}^{\infty} u_l (\lambda_1 x_l + \lambda_2 - y_l), \quad u = (0, \dots, u_k, u_k + 1, \dots).$$

Если найдутся множители Лагранжа $\hat{\lambda}_1, \hat{\lambda}_2 \geq 0$ и допустимый в (3.6) набор \hat{u} , такие что

$$\min_{u>0} L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) = L(\widehat{u}, \widehat{\lambda}_1, \widehat{\lambda}_2)$$

и выполнено условие

$$\widehat{\lambda}_1 \left(\sum_{l=r}^{\infty} \widehat{u}_l x_l - 1 \right) + \widehat{\lambda}_2 \left(\sum_{l=0}^{\infty} \widehat{u}_l - \delta^2 \right) = 0$$

(называемое условием дополняющей нежесткости), то \hat{u} будет точкой максимума в задаче (3.6). Это следует из того, что в силу неотрицательности множителей Лагранжа, для всех допустимых u будет верно неравенство

$$L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) \le -\sum_{l=k}^{\infty} u_l \frac{(l+k)!}{(l-k)!},$$

откуда

$$\min_{u\geq 0} L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) \leq \min_{\substack{u\geq 0\\\sum_{l=0}^{\infty} u_l \leq \delta^2\\\sum_{l=r}^{\infty} u_l x_l \leq 1}} - \sum_{l=k}^{\infty} u_l \frac{(l+k)!}{(l-k)!}.$$

Но, из того, что \widehat{u} минимизирует функцию Лагранжа и удовлетворяет условиям дополняющей нежесткости следует

$$\min_{u\geq 0} L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) = -\sum_{l=k}^{\infty} \widehat{u}_l \frac{(l+k)!}{(l-k)!}.$$

Таким образом,

$$-\sum_{l=k}^{\infty} \widehat{u}_l \frac{(l+k)!}{(l-k)!} \le \min_{\substack{u_l \ge 0 \\ \sum_{l=n}^{\infty} u_l \le \delta^2 \\ \sum_{l=r}^{\infty} u_l x_l \le 1}} -\sum_{l=k}^{\infty} u_l \frac{(l+k)!}{(l-k)!}.$$

Предъявим такие $\widehat{\lambda}_1, \widehat{\lambda}_2$ и \widehat{u} .

Рассмотрим выражение $(y_{l+1}-y_l)/(x_{l+1}-x_l)$, $l\geq r+1$. Преобразуем его следующим образом,

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} = \frac{y_l}{x_l} \frac{k}{r} \frac{l - r + 1}{l - k + 1} = \frac{y_{l-1}}{x_{l-1}} \frac{k}{r} \frac{l - r}{l - k} \frac{l + k}{l - k + 1} \frac{l - r + 1}{l + r}$$
$$= \frac{y_l - y_{l-1}}{x_l - x_{l-1}} \frac{l + k}{l - k + 1} \frac{l - r + 1}{l + r}.$$

Нетрудно убедиться, что $\frac{l+k}{l-k+1}\frac{l-r+1}{l+r} \leq 1$, откуда

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} \le \frac{y_l - y_{l-1}}{x_l - x_{l-1}}.$$

При l=r используем похожие рассуждения,

$$\frac{y_{r+1} - y_r}{x_{r+1} - x_r} = \frac{y_r}{x_r} \frac{k}{r} \frac{1}{r - k + 1} = \frac{y_{r-1}}{x_r} \frac{k}{r - k} \frac{r + k}{r(r - k + 1)} = \frac{y_r - y_{r-1}}{x_r - x_{r-1}} \frac{r + k}{r(r - k + 1)}.$$

Из $\frac{r+k}{r(r-k+1)} \le 1$ следует

$$\frac{y_{r+1} - y_r}{x_{r+1} - x_r} \le \frac{y_r - y_{r-1}}{x_r - x_{r-1}}.$$

Выражение $(y_{l+1}-y_l)/(x_{l+1}-x_l)$ представляет собой коэффициент наколона прямой, соединяющей соседние точки множества $\{(x_l,y_l)\}_{l=k}^{\infty}$. Он убывает, а последовательности x_l и y_l монотонно возрастают до бесконечности, откуда следует, что любая такая прямая является опорной к данному множеству, причем оно целиком лежит под прямой. Также найдется число $s \geq r-1$ такое, что $x_s < \delta^{-2} \leq x_{s+1}$. Рассмотрев прямую $y = \widehat{\lambda}_1 x + \widehat{\lambda}_2$ (где $\widehat{\lambda}_1$, $\widehat{\lambda}_2$ определены в (3.1)), соединяющую точки (x_s, y_s) и (x_{s+1}, y_{s+1}) , получим $\widehat{\lambda}_1 x_l + \widehat{\lambda}_2 - y_l \geq 0$, $l \geq k$. Отсюда

$$L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) \ge -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2, \quad \forall u \ge 0.$$

Рассмотрим набор \widehat{u} ,

$$\widehat{u}_{i} = \begin{cases} 0, & i \notin \{s, s+1\}, \\ \frac{\delta^{2}x_{s+1}-1}{x_{s+1}-x_{s}}, & i = s, \\ \frac{1-\delta^{2}x_{s}}{x_{s+1}-x_{s}}, & i = s+1. \end{cases}$$
(3.7)

Нетрудно проверить, что он допустим в (3.6), удовлетворяет условиям дополняющей нежесткости и минимизирует функцию Лагранжа, т.к. $L(\widehat{u},\widehat{\lambda}_1,\widehat{\lambda}_2)=-\widehat{\lambda}_1-\widehat{\lambda}_2\delta^2.$ Также $\widehat{\lambda}_1,\widehat{\lambda}_2>0$ по построению. Таким образом, решение двойственной задачи равно равно $\widehat{\lambda}_1+\widehat{\lambda}_2\delta^2.$ Получаем оценку снизу для погрешности оптимального восстановления $E(\delta)\geq\sqrt{\widehat{\lambda}_1+\widehat{\lambda}_2\delta^2}.$

Рассмотрим метод (3.2). Покажем, что его погрешность совпадает с

полученной оценкой.

$$||x^{(k)} - m_a(g)||_{L_2(w_k, [-1,1])}^2 = \sum_{l=k}^{r-1} (g_l - c_l)^2 \frac{(l+k)!}{(l-k)!} + \sum_{l=r}^{\infty} (a_l g_l - c_l)^2 \frac{(l+k)!}{(l-k)!}$$

$$= \sum_{l=l}^{r-1} (g_l - c_l)^2 \frac{(l+k)!}{(l-k)!} + \sum_{l=r}^{\infty} (a_l (g_l - c_l) + c_l (a_l - 1))^2 \frac{(l+k)!}{(l-k)!}.$$

Преобразуем второе слагаемое, применив неравенство Коши-Буняковского $|< x,y>| \leq |x||y|$ к векторам

$$x = \left(\frac{a_l}{\sqrt{\widehat{\lambda}_2}}, \frac{a_l - 1}{\sqrt{\widehat{\lambda}_1}} \sqrt{\frac{(l-r)!}{(l+r)!}}\right), \quad y = \left(\sqrt{\widehat{\lambda}_2} (g_l - c_l), \sqrt{\widehat{\lambda}_1} \sqrt{\frac{(l+r)!}{(l-r)!}} c_l\right).$$

Получим

$$||x^{(k)} - m_a(g)||_{L_2(w_k, [-1,1])}^2 \le \sum_{l=k}^{r-1} (g_l - c_l)^2 \frac{(l+k)!}{(l-k)!} + \sum_{l=r}^{\infty} A_l \left(\widehat{\lambda}_2(g_l - c_l)^2 + \widehat{\lambda}_1 \frac{(l+r)!}{(l-r)!} c_l^2 \right),$$

где

$$A_{l} = \left(\frac{a_{l}^{2}}{\widehat{\lambda}_{2}} + \frac{(a_{l} - 1)^{2}}{\widehat{\lambda}_{1}} \frac{(l - r)!}{(l + r)!}\right) \frac{(l + k)!}{(l - k)!}.$$

Условие (3.4) эквивалентно $A_l \leq 1$, а также, по нашему построению, выполнено неравенство $\frac{(l+k)!}{(l-k)!} \leq \widehat{\lambda}_2, \ l=k,\dots r-1$. Откуда

$$||x^{(k)} - m_a(g)||_{L_2(w_k, [-1,1])}^2 \le \widehat{\lambda}_2 \sum_{l=k}^{\infty} (g_l - c_l)^2 + \widehat{\lambda}_1 \sum_{l=r}^{\infty} \frac{(l+r)!}{(l-r)!} c_l^2 \le \widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1.$$

Рассмотрим множества

$$K_s = \left\{ x \in W : ||x||_{L_2([-1,1])} < \sqrt{\frac{(s-r)!}{(s+r)!}} ||x^{(r)}||_{L_2(w_r,[-1,1])} \right\}, \quad s \ge r.$$

Лемма 6 Пусть $x \in K_s$, тогда

$$||x^{(k)}||_{L_2(w_k,[-1,1])} \le \sqrt{\frac{(s+k)!}{(s-k)!}} \left(\frac{(s-r)!}{(s+r)!}\right)^{k/2r} ||x||_{L_2[-1,1]}^{1-k/r} ||x^{(r)}||_{L_2(w_r,[-1,1])}^{k/r}, \quad (3.8)$$

 $0 \le k < r \le s$.

Доказательство. Как было показано раньше, имеет место неравенство

$$\sup_{\substack{y \in W \\ \|y\|_{L_2([-1,1])} \le \delta}} \|y^{(k)}\|_{L_2(w_k,[-1,1])} \le E(\delta).$$

Подставляя выражение погрешности оптимального восстановления из теоремы 8, получим $\|y^{(k)}\|_{L_2(w_k,[-1,1])} \leq \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}$ при ограничениях $\|y^{(r)}\|_{L_2(w_r,[-1,1])} = 1$, $\|y\|_{L_2([-1,1])} = \delta$ и $x_s < \delta^{-2} \leq x_{s+1}$. Обозначим через A^* наименьшую константу A, удовлетворяющую неравенству $\sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2} \leq A\delta^{1-k/r}$ при $x_s < \delta^{-2} \leq x_{s+1}$. Имеем, $\|y^{(k)}\|_{L_2(w_k,[-1,1])} \leq A^* \|y\|_{L_2([-1,1])}^{1-k/r}$, при $\|y^{(r)}\|_{L_2(w_r,[-1,1])} = 1$ и $x_s < \|y\|_{L_2([-1,1])}^{-2} \leq x_{s+1}$. Положив $y(t) = \frac{x(t)}{\|x^{(r)}\|_{L_2(w_r,[-1,1])}}$, $x \neq 0$, получим

$$||x^{(k)}||_{L_2(w_k,[-1,1])} \le A^* ||x||_{L_2[-1,1]}^{1-k/r} ||x^{(r)}||_{L_2(w_r,[-1,1])}^{k/r},$$

при $x_s<\left(\frac{\|x^{(r)}\|_{L_2(w_r,[-1,1])}}{\|x\|_{L_2([-1,1])}}\right)^2\leq x_{s+1}$. Т.к. $s\geq r$, то число A^{*2} является решением следующей задачи на условный экстремум

$$\frac{\widehat{\lambda}_1 x + \widehat{\lambda}_2}{x^{k/r}} \to \max, \quad x_s \le x \le x_{s+1}.$$

Нетрудно убедиться, что единственная стационарная точка максимизируемой функции $x^* = \frac{\hat{\lambda}_2}{\hat{\lambda}_1} \frac{k}{r-k}$ является точкой ее глобального минимума, поэтому искомый максимум достигается на концах отрезка и равен $\frac{y_s}{x_s^{k/r}}$, либо $\frac{y_{s+1}}{x_{s+1}^{k/r}}$. Рассмотрим функцию $y(x) = \left(\frac{a+x}{a-x}\right)^{1/x}$ на интервале 0 < x < a. Вычислив производную, получим $y'(x) = \left(\frac{a+x}{a-x}\right)^{1/x-1} \frac{1}{x^2(a-x)^2} \left((x^2-a^2)\ln\frac{a+x}{a-x}+2ax\right)$.

Первые два множителя очевидно неотрицательны на рассматриваемом интервале. Выражение в скобках принимает значение 0 при x=0, а его производная $2x \ln \frac{a+x}{a-x}$ неотрицательна, таким образом само выражение также неотрицательно. Отсюда следует, что функция y(x) возрастает на интервале 0 < x < a. Подставляя a = s+1, получим

$$\left(\frac{s+1+k}{s+1-k}\right)^{1/k} \le \left(\frac{s+1+r}{s+1-r}\right)^{1/r}, \quad 0 < k < r < s+1,$$

или

$$\frac{s+1+k}{s+1-k} \le \left(\frac{s+1+r}{s+1-r}\right)^{k/r}, \quad 0 < k < r < s+1,$$

что в используемых обозначениях будет иметь вид

$$\frac{y_{s+1}}{y_s} \le \left(\frac{x_{s+1}}{x_s}\right)^{k/r}, \quad \frac{y_{s+1}}{x_{s+1}^{k/r}} \le \frac{y_s}{x_s^{k/r}}, \quad 0 < k < r < s+1.$$

Таким образом, $A^* = \sqrt{\frac{y_s}{x_s^{k/r}}}$. Поскольку константа A^* монотонно убывает с ростом s, то неравенство будет выполнено для всех функций $x \neq 0$, таких что $x_s < \left(\frac{\|x^{(r)}\|_{L_2(w_r,[-1,1])}}{\|x\|_{L_2([-1,1])}}\right)^2$. Отсюда, после подстановки явного выражения для x_s и простых преобразований, получим утверждение следствия для 0 < k < r < s+1. Для 0 = k < r < s+1 неравенство (3.8) очевидно.

Заметим, что $K_r \supset K_{r+1} \supset \dots$ и, соответствующие этим множествам константы в (3.8), являются точными и убывают к единице. На множестве $W \setminus K_r$ неравенство типа (3.8) неверно. Чтобы убедиться в этом, достаточно рассмотреть функцию Y_k^0 .

В пункте 5.3 книги [37] приведено следующее неравенство для функций $x\in W,$ у которых $c_l=0,$ l=k, k+1, ..., r-1,

$$||x^{(k)}||_{L_2(w_k,[-1,1])} \le \sqrt{\frac{(r+k)!}{(r-k)!}} \left(\frac{1}{(2r)!}\right)^{k/2r} ||x||_{L_2[-1,1]}^{1-k/r} ||x^{(r)}||_{L_2(w_r,[-1,1])}^{k/r}.$$

Рассмотрим класс функций $W_0 = \{x \in W : c_l = 0, l = k, k+1, ..., r-1\}$ и сформулируем для него утверждение, аналогичное теореме 8.

Положим

$$x_{l} = \begin{cases} 0, & l = r - 1, \\ \frac{(l+r)!}{(l-r)!}, & l \ge r, \end{cases} \quad y_{l} = \begin{cases} 0, & l = r - 1, \\ \frac{(l+k)!}{(l-k)!}, & l \ge r. \end{cases}$$

Если $x_s < \delta^{-2} \le x_{s+1}, \ s \ge r-1$, то определим $\widehat{\lambda}_1, \widehat{\lambda}_2$ по формулам (3.1). В таком случае, как мы увидим, $\widehat{\lambda}_1 > 0, \ \widehat{\lambda}_2 \ge 0$.

Теорема 9 Пусть $x \in W_0$, тогда погрешность оптимального восстановления равна

$$E(\delta) = \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}.$$

Методы

$$m_a(g)(x) = \sum_{l=r}^{\infty} a_l g_l \sqrt{\frac{(l+k)!}{(l-k)!}} Y_{l-k}^k(t),$$
 (3.9)

где g_l и a_l определены в (3.3),(3.4), являются оптимальными.

Доказательство. Проведем рассуждения аналогично доказательству теоремы 1. Оценку снизу для погрешности оптимального восстановления дает решение двойственной задачи

$$||x^{(k)}||_{L_2(w_k,[-1,1])}^2 \to \max, \quad ||x^{(r)}||_{L_2(w_r,[-1,1])}^2 \le 1, \quad ||x||_{L_2([-1,1])}^2 \le \delta^2, \quad x \in W_0,$$

функция Лагранжа которой, после соответствующих преобразований и замены $c_l^2=u_l$ будет иметь вид

$$L(u, \lambda_1, \lambda_2) = -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=r}^{\infty} u_l \left(-\frac{(l+k)!}{(l-k)!} + \lambda_2 + \lambda_1 u_l \frac{(l+r)!}{(l-r)!} \right)$$

$$= -\lambda_1 - \lambda_2 \delta^2 + \sum_{l=r}^{\infty} u_l (\lambda_1 x_l + \lambda_2 - y_l), u = (u_r, u_{r+1} \dots).$$

Как и прежде, для $l \geq r+1$, доказывается неравенство

$$\frac{y_{l+1} - y_l}{x_{l+1} - x_l} \le \frac{y_l - y_{l-1}}{x_l - x_{l-1}}.$$

При l=r имеем

$$\frac{y_{r+1} - y_r}{x_{r+1} - x_r} = \frac{y_r}{x_r} \frac{k}{r(r+1-k)} \le \frac{y_r}{x_r}.$$

Отсюда

$$L(u, \widehat{\lambda}_1, \widehat{\lambda}_2) \ge -\widehat{\lambda}_1 - \widehat{\lambda}_2 \delta^2, \quad \forall u \ge 0$$

и набор \widehat{u} , определенный формулой (3.7), если $s \geq r$ и $\widehat{u}: u_l = \begin{cases} 0, & l \neq r, \\ 1, & l = r, \end{cases}$ при s = r - 1, доставляет экстремум в двойственной задаче.

Рассмотрим погрешность метода (3.9). При $\delta^{-2} \leq x_r$, имеем $\widehat{\lambda}_2 = 0$, откуда $m_a(g) = 0$. Тогда

$$\sup_{\substack{x \in W_0, \quad g \in L_2([-1,1]) \\ \|x-g\|_{L_2([-1,1])} \le \delta}} \|x^{(k)} - m_a(g)\|_{L_2(\omega_k,[-1,1])}^2 \le \sup_{x \in W_0} \|x^{(k)}\|_{L_2(\omega_k,[-1,1])}^2$$

$$= \sup_{\substack{x \in W_0, \\ \|x\|_{L_2([-1,1])} \le \delta}} \|x^{(k)}\|_{L_2(\omega_k,[-1,1])}^2 = \widehat{\lambda}_1.$$

При $x_s < \delta^{-2} \le x_{s+1}, s \ge r,$

$$||x^{(k)} - m_a(g)||_{L_2(w_k,[-1,1])}^2 = \sum_{l=r}^{\infty} (a_l g_l - c_l)^2 \frac{(l+k)!}{(l-k)!}$$

$$= \sum_{l=r}^{\infty} (a_l(g_l - c_l) + c_l(a_l - 1))^2 \frac{(l+k)!}{(l-k)!} \le \sum_{l=r}^{\infty} A_l \left(\widehat{\lambda}_2(g_l - c_l)^2 + \widehat{\lambda}_1 \frac{(l+r)!}{(l-r)!} c_l^2 \right)$$

$$\le \widehat{\lambda}_2 \delta^2 + \widehat{\lambda}_1,$$

где, как и прежде, мы применили неравенство Коши-Буняковского и

воспользовались тем, что (3.4) эквивалентно неравенству

$$A_{l} = \left(\frac{a_{l}^{2}}{\widehat{\lambda}_{2}} + \frac{(a_{l} - 1)^{2}}{\widehat{\lambda}_{1}} \frac{(l - r)!}{(l + r)!}\right) \frac{(l + k)!}{(l - k)!} \le 1.$$

Лемма 7 ([20]) Пусть $x \in W_0$, тогда

$$||x^{(k)}||_{L_2(w_k,[-1,1])} \le \sqrt{\frac{(r+k)!}{(r-k)!}} \left(\frac{1}{(2r)!}\right)^{k/2r} ||x||_{L_2[-1,1]}^{1-k/r} ||x^{(r)}||_{L_2(w_r,[-1,1])}^{k/r}, \quad (3.10)$$

 $0 \le k < r.$

Доказательство.

Имеем оценку снизу

$$\sup_{\substack{y \in W_0 \\ \|y\|_{L_2([-1,1])} \le \delta}} \|y^{(k)}\|_{L_2(w_k,[-1,1])} \le E(\delta).$$

Подставляя выражение погрешности оптимального восстановления из теоремы 9, получим $\|y^{(k)}\|_{L_2(w_k,[-1,1])} \leq \sqrt{\widehat{\lambda}_1 + \widehat{\lambda}_2 \delta^2}$, при ограничениях $y \in W_0$, $\|y^{(r)}\|_{L_2(w_r,[-1,1])} = 1$, $\|y\|_{L_2([-1,1])} = \delta$. Наибольшее значение погрешности оптимального восстановления достигается в случае $\delta^{-2} \leq (2r)!$, при этом $\widehat{\lambda}_2 = 0$. Тогда $\|y^{(k)}\|_{L_2(w_k,[-1,1])} \leq \sqrt{\widehat{\lambda}_1}$, при ограничениях $y \in W_0$, $\|y^{(r)}\|_{L_2(w_r,[-1,1])} = 1$. Обозначим через A^* наименьшую константу A, удовлетворяющую неравенству $\sqrt{\widehat{\lambda}_1} \leq A\delta^{1-k/r}$. Подставляя $\widehat{\lambda}_1 = y_r/x_r$, получим что наименьшая из таких констант равна $A^* = \sqrt{\frac{y_r}{x_r^{k/r}}}$ или, записав x_r и y_r в явном виде, $A^* = \sqrt{\frac{(r+k)!}{(r-k)!}} \left(\frac{1}{(2r)!}\right)^{k/2r}$. Имеем, $\|y^{(k)}\|_{L_2(w_k,[-1,1])} \leq A^* \|y\|_{L_2([-1,1])}^{1-k/r}$, при $y \in W_0$, $\|y^{(r)}\|_{L_2(w_r,[-1,1])} = 1$. Положив $y(t) = \frac{x(t)}{\|x^{(r)}\|_{L_2(w_r,[-1,1])}}$, $x \neq 0$, получим

$$||x^{(k)}||_{L_2(w_k,[-1,1])} \le A^* ||x||_{L_2[-1,1]}^{1-k/r} ||x^{(r)}||_{L_2(w_r,[-1,1])}^{k/r}.$$

Таким образом, мы показали, что неравенство (3.10) может быть получено из решения задачи оптимального восстановления в теореме 9. Несмотря на то, что на более широком классе функций W неравенста типа (3.10) не существует, мы доказали (3.8) на его подмножествах K_s , $s \geq r$. Теперь мы можем уточнить неравенство (3.10) и показать, что константа в нем может быть уменьшена на множествах $W_0 \cap K_s$, $s \geq r$. Из того, что погрешности оптимального восстановления в теоремах 8 и 9 совпадают для всех δ , за исключением $\delta^{-2} < (2r)!$, следует, что на множествах $W_0 \cap K_s$, $s \geq r$ сохраняются неравенства (3.8) и константы в них являются точными. Эти константы меньше константы в (3.10) и монотонно убывают к 1 с ростом s.

Список использованных источников

- 1. $Kolmogorov\ A.\ N.$ Uber die beste annaherung von functionen einer gegebenen functionenklasse $//\ Ann.\ of\ Math.,.-1936.$ Vol. 37. Pp. 107–110.
- 2. Sard A. Best approximate integration formulas; best approximation formulas // Amer. J. Math. 1949. Vol. 71, no. 80-91.
- 3. Никольский С. М. К вопросу об оценках приближений квадратурными формулами // Успехи мат. наук. 1950. Т. 5, № 2(36). С. 165—177.
- 4. Смоляк С. Об оптимальном восстановлении функций и функционалов от них.: Ph.D. thesis / $M\Gamma V$. 1965.
- 6. Бахвалов Н. С. Об оптимальности линейных методов приближения операторов на выпуклых классах функций // Ж. вычисл. матем. u матем. $\phi us. 1971. T. 11$, $\mathbb{N} 4. C. 1014-1018$.
- 7. $\mathit{Марчук}\ A.\ \Gamma.,\ \mathit{Осипенко}\ K.\ \mathit{Ю}.\$ Наилучшее приближение функций, заданных с погрешностью в конечном числе точек $//\ \mathit{Mam}.\ \mathit{заметкu}.-1975.$ Т. 17, N 3. С. 359–368.
- 8. Michelli C. A., Rivlin T. J. A Survey of Optimal Recovery. New York: IBM Yorktown Heights, 1977.
- 9. Michelli C. A., Rivlin T. J. Lectures on optimal recovery // Lecture Notes in Mathematics. Numerical Analysis. 1984. Vol. 1129. Pp. 21–93.
- Melkman A. A., Micchelli C. A. Optimal estimation of linear operators in hilbert spaces from inaccurate data // SIAM J. Numer. Anal. — 1979. — Vol. 16, no. 87-105.
- 11. Osipenko K. Y., Stessin M. Hadamard and schwarz type theorems and optimal recovery in spaces of analytic functions // Constr. Approx. 2010. Vol. 31, no. 1. Pp. 37–67.

- 12. *Магарил-Ильяев Г. Г., Осипенко К. Ю.* Оптимальное восстановление функций и их производных по коэффициентам Фурье, заданным с погрешностью // *Матем. сб.* 2002. Т. 193, № 3. С. 79–100.
- 13. Магарил-Ильяев Г. Г., Осипенко К. Ю. Оптимальное восстановление функций и их производных по приближенной информации о спектре и неравенства для производных // Функ. анализ и его прил. 2003. Т. 37. С. 51–64.
- 14. Осипенко К. Ю. О восстановлении решения задачи Дирихле по неточным исходным данным // Владикавказский мат. журн. 2004. Т. 6, № 4. С. 55–62.
- 15. Magaril-Il'yaev G. G., Osipenko K. Y., Tikhomirov V. M. On optimal recovery of heat equation solutions.— Sofia: Marin Drinov Academic Publishing House, 2004.— Pp. 163–175.
- 16. Logan B. F., Shepp L. A. Optimal reconstruction of a function from its projections // Duke mathematical journal.— 1975.— Vol. 42, no. 4.— Pp. 645–659.
- 17. Degraw A. J. Optimal recovery of holomorfic functions from inaccurate information about integration type operators: Ph.D. thesis / University at Albany, State University of New York. 2012.
- 18. Degraw A. J. Optimal recovery of holomorphic functions from inaccurate information about radial integration // American Journal of Computational Mathematics. 2012. no. 2. Pp. 258–268.
- 19. *Магарил-Ильяев Г. Г., Осипенко К. Ю.* Неравенство Харди–Литтлвуда— Полиа и восстановление производных по неточной информации // Докл. PAH. 2011. Т. 438, № 3. С. 300–302.
- 20. *Баграмян Т. Э.* Кольцевые артефакты в томографии // Сборник трудов IV Всероссийской научной конференции "Математическое моделирование развивающейся экономики и экологии". ЭКОМОД-2009. Киров: ВятГУ, 2009.

- 21. *Баграмян Т. Э.* Аналог теоремы Кормака для экспоненциального преобразования Радона // Тезисы докладов Международной конференции, посвященной памяти Г.В. Дорофеева "Традиции гуманизации и гуманитаризации математического образования". Москва: ГОУ Педагогическая академия, 2010.
- 22. Баграмян Т. Э. Оптимальное восстановление гармонической функции по неточно заданным значениям оператора радиального интегрирования // Владикавказский математический экурнал. 2012. Т. 14, № 1. С. 22–36.
- 23. *Баграмян Т. Э.* Применение теории оптимального восстановления к некоторым задачам компьютерной томографии // Материалы Международного молодежного научного форума "ЛОМОНОСОВ-2012". Москва: МАКС Пресс, 2012.
- 24. Баграмян Т. Э. Оптимальное восстановление функций по неточно заданному преобразованию Радона на классах, задаваемых степенью оператора Лапласа // Вестник РУДН. Математика. Информатика. Φ изика. 2013. \mathbb{N} 1. С. 19–25.
- 25. Баграмян Т. Э. Оптимальное восстановление функций по их неточно заданному преобразованию Радона // Вестник Тамбовского Университета, Серия: Естественные и технические науки. 2013. Т. 18, № 1. С. 15–17.
- 26. Natterer F. The Mathematics of Computerized Tomography. Stuttgart: John Wiley & Sons., 1986.
- 27. Abramovitz M., Stegun I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.— New York: Dover Publications, 1964.
- 28. Seeley R. T. Spherical harmonics // Amer. Math. Monthly.— 1966.— Vol. 73.

- 29. Axler S., Bourdon P., Ramey W. Harmonic function theory. Second edition. New York: Springer-Verlag New York, Inc., 2001.
- 30. *Градштейн И. С., Рыжик И. М.* Таблицы интегралов, сумм, рядов и произведений (4-е изд.). Москва: Наука, 1963.
- 31. *Желобенко Д. П.* Компактные группы Ли и их представления. Москва: Наука, 1970.
- 32. Кириллов А. А. Элементы теории представлений. Москва: Наука, 1978.
- 33. *Виленкин Н. Я.* Специальные функции и теория представления групп. Москва: Наука, 1965.
- 34. Rubin B. Generalized cosine transforms and classes of star bodies.
- 35. Магарил-Ильяев Г. Г., Осипенко К. Ю. Оптимальное восстановление операторов по неточной информации // Итоги науки. Южный федеральный округ. Математический форум. Исследования по выпуклому анализу. 2009. Т. 2. С. 158–192.
- 36. *Бейтмен Г., Эрдейи А.* Высшие трансцендентные функции. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. Москва: Наука, 1966.
- 37. Неравенства для производных и их приложения / В. Бабенко Н. Корнейчук, В. Кофанов, С. Пичугов. Киев: Наукова Думка, 2003.
- 38. *Корнейчук Н. П.* Точные константы в теории приближения. Москва: Наука, 1987.
- 39. Helgason S. Integral geometry and Radon transform. Springer, 2010.
- 40. Epstein C. L. Introduction to the mathematics of medical imaging.— 2 edition.—Philadelphia: SIAM, 2008.
- 41. *Магарил-Ильяев Г. Г.*, *Тихомиров В.* О неравенствах для производных колмогоровского типа. // *Матем. сб.* 1997. Т. 12, № 188. С. 73–106.
- 42. *Магарил-Ильяев Г. Г., Осипенко К. Ю.* Об оптимальном гармоническом синтезе по неточно заданному спектру // Функ. анал. и его прил. $2010.-\mathrm{T}.$ 44, № $3.-\mathrm{C}.$ 76–79.

- 43. *Магарил-Ильяев Г. Г., Осипенко К. Ю.* О восстановлении операторов сверточного типа по неточной информации // *Тр. МИАН.* 2010. Т. $269. \mathrm{C.}\ 181–192.$
- 44. *Осипенко К. Ю.* Оптимальная интерполяция аналитических функций // $\mathit{Mam. \; заметкu.} 1972. \text{T. } 12, \; \mathbb{N} \ 4. \text{C. } 465-476.$