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Abstract. We prove a general theorem which gives a necessary
condition of extremum in the dual optimal recovery problem in
terms of inclusion in certain annihilators. Applications of this the-
orem yield Hadamard and Schwarz type results. We also construct
related optimal recovery methods.

1. Introduction

Let D ⊂ Ck be a domain, ν be a probability measure on D̄ and X be
a closed subspace of L2(ν). Consider D0, . . . , Dn ⊂ D and probability
measures µ0, . . . , µn on D0, . . . , Dn respectively. We suppose that X ⊂
L2(µj), j = 0, 1, . . . , n. We allow one of Dj to coincide with D. In this
case we assume that µj coincides with ν.

Write D = (D0, . . . , Dn), µ = (µ0, . . . , µn), δ = (δ1, . . . , δn), y =
(y1, . . . , yn).

An optimal recovery problem for this setting is stated as follows (for
details on general optimal recovery problems see [8], [9], [16]). Suppose
that f ∈ X is approximately known on D1, . . . , Dn. It is required to
find an optimal method of recovery of f on D0.

This means that we are given y1, . . . , yn defined on D1, . . . , Dn such
that

‖fj − yj‖L2(µj) ≤ δj, j = 1, . . . , n,

where fj is the restriction of f to Dj and δj ≥ 0, j = 1, . . . , n are
accuracy levels. In particular, δj = 0 means that f is known precisely
on Dj.

A recovery algorithm (method, procedure, etc.) is an operator

A : L2(µ1)× . . .× L2(µn) → L2(µ0).
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We consider A(y), y = (y1, . . . , yn), to be the recovered value of f on
D0. At this point we impose no conditions on A. In particular, we
require A to be neither continuous, nor linear.

Given a recovery method A its accuracy is characterized by the max-
imal possible error

e(X,D, µ, δ, A) = sup{‖f0 − A(y)‖L2(µ0) : f ∈ X,

y ∈ L2(µ1)× . . .× L2(µn), ‖fj − yj‖L2(µj) ≤ δj, j = 1, . . . , n}.
We futher introduce the optimal recovery error as

(1) E(X,D, µ, δ) = inf
A : L2(µ1)×...×L2(µn)→L2(µ0)

e(X,D, µ, δ, A).

A method Â such that

E(X,D, µ, δ) = e(X,D, µ, δ, Â)

is called an optimal recovery method.
The problem of finding an optimal recovery method (and sometimes

an extremal function at which the optimal recovery error is attained)
is usually referred to as optimal recovery problem.

As we will show below this problem is closely related to the following
extremal problem which we call the dual problem. Find

(2) sup
{
‖f0‖2

L2(µ0) : f ∈ X, ‖fj‖2
L2(µj)

≤ δ2
j , j = 1, . . . , n

}
.

In the special case when D is the unit disk, D = D, n = 2, measures
µ0, µ1, µ2 are the normalized Lebesgue measures on the circles {|z| =
ρ}, {|z| = r1} and {|z| = r2} respectively ( r1 < ρ < r2), and X is
the Hardy space H2, problem 2 is reminiscent of the Hadamard three
circle theorem (cf. [15, Chapter 14]) which states that for an analytic
function f in the unit disk

M(ρ) ≤ M
log r2/ρ
log r2/r1 (r1)M

log ρ/r1
log r2/r1 (r2),

where

M(r) = max{|f(z)| : |z| = r}.
This result gives an estimate for the value of the following extremal
problem. Find

max{‖fρ‖H∞ : ‖fr1‖H∞ ≤ δ1, ‖fr2‖H∞ ≤ δ2},
where fτ (z) = f(τz).

In section 3 of this paper we consider a similar problem in the Hardy
space in the unit ball of Cn. We call problems of this form Hadamard
type problems.
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Another case is when D is the unit disk D, µ0 and µ1 are point
masses and µ2 is the normalized Lebesgue measure on the unit circle.
Here problem (2) turns into

(3) max{|f(a0)| : |f(a1)| ≤ δ1, ‖f‖H2 ≤ δ2},

where a0, a1 ∈ D. A more general problem (with Hp-norm constraint)
was considered in [13]. Results of this type might be viewed as gen-
eralizations of the classical Schwarz Lemma. In this paper we inves-
tigate another generalization of Schwarz Lemma, which is obtained
from (3) by the replacement of the point mass at a0 with the normal-
ized Lebesgue measure on a circle centered at a0. As we will see this
change makes the problem much harder. In particular, it is a rare
occasion when the extremal function is rational.

The structure of this paper is as follows. In section 2 we prove two
general results, Theorem 1 and Theorem 2. The first of them gives a
necessary condition of extremum in the dual problem in terms of inclu-
sion in certain annihilators. The second expresses the value of the dual
extremal problem in terms of it’s spectrum. These results provide the
main tool for our investigation of two extremal problems one of which
is of Hadamard type and the other is a generalization of the Schwarz
Lemma. These problems are considered in section 3. Here we describe
spectra and extremal spectral points for both problems. In section 4
we prove another general theorem, Theorem 6, which gives a way of
constructing an optimal recovery method under a certain condition.
We show that in our cases this condition is met and use Theorem 6 for
the construction of optimal recovery methods in corresponding optimal
recovery problems. Finally, section 5 contains some open problems.

Acknowledgment. The authors would like to thank the referee for
very useful comments.

2. Euler’s Equation

The main goal of this section is to give a necessary condition in prob-
lem (2) in terms of certain annihilators. Let K(z, w) be the reproduc-
ing kernel of X. We may consider measures µ0, µ1, . . . , µn as defined on
the whole domain D by the trivial extension outside of D0, D1, . . . , Dn

respectively. Write

µ̃ = −µ0 +
n∑

j=1

λjµj.
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Then µ̃ is a regular measure on D and every function from X is square-
integrable with respect to µ̃. For w ∈ D we introduce

dµ̃w(z) = K(z, w)dµ̃(z).

Then obviously every function from X is µ̃w-integrable. The measures
µ̃ and µ̃w depend on λ = (λ1, . . . , λn). We explicitly indicate this
dependence for the regular part of µ̃w and write

τλ
w(z) =

∫

D

K(z, τ) dµ̃w(τ).

Recall that given a convex function g on a convex subset A of a
Banach space X, the subdifferential of g at a point t ∈ A, ∂g(t),
consists of all continuous linear functional l on X such that for every
x ∈ A

〈x− t, l〉 ≤ g(x)− g(t).

It is well-known that if A is open and g is continuous at t, then ∂g(t) 6=
∅.

We will need the following result.

Lemma 1. Let X be a Banach space and g1, g2 be continuous convex
positive functions in a convex neighborhood of ζ ∈ X and

h =
g1

g2

.

If ζ is a point of local maximum of h, then ∂g1(ζ) ⊂ h(ζ)∂g2(ζ); if ζ is
a point of local minimum of h , then h(ζ)∂g2(ζ) ⊂ ∂g1(ζ).

Proof. Let ζ be the point of local maximum. For every z in a neigh-
borhood of ζ, g1(z) ≤ h(ζ)g2(z). If x∗ ∈ ∂g1(ζ), then

〈z − ζ, x∗〉 ≤ g1(z)− g1(ζ) ≤ h(ζ)(g2(z)− g2(ζ)),

which means that x∗ ∈ h(ζ)∂g2(ζ). The other statement is proved in a
similar way. ¤

We apply Lemma 1 to the following special case where

g2 = max{ϕ1, . . . , ϕn},
and ϕ1, . . . , ϕn are positive and convex functions in a convex neighbor-
hood of ζ ∈ X, which are continuous at ζ. In this case the following
theorem of Dubovickii and Miljutin [3], (also see [6], English trans-
lation in [1], and [4]) expresses the subdifferential of g2 in terms of
subdifferentials of ϕj, j = 1, ..., n.
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Theorem A. Let X be a Banach space, ϕj : X → R ∪ {±∞}, j =
1, ..., n be convex functions on X continuous at ζ,

F (x) = max{ϕ1(x), ..., ϕn(x)},
and

F (ζ) = ϕj1(ζ) = ϕj2(ζ) = ... = ϕjk
(ζ),

F (ζ) > ϕl(ζ), if l 6= j1, ..., jk.

Then

∂F (ζ) = co
k⋃

m=1

∂ϕjm(ζ).

Theorem A implies that ∂g2(ζ) is the convex combination of subd-
ifferentials of those ϕj which coincide with g2 at ζ. If in addition all
functions g1, ϕ1, . . . , ϕn are Frechet differentiable at ζ, then their sub-
differentials at ζ consist of corresponding Frechet derivatives and we
obtain the following

Corollary 1. Let g, ϕ1, . . . , ϕn be positive, convex in a convex neigh-
borhood of ζ, and Frechet differentiable at ζ. If ζ is a point of extremum
of

h =
g

max{ϕ1, . . . , ϕn} ,

then there are 0 ≤ λ1, . . . , λn ≤ 1 such that

1.
n∑

j=1

λj = 1.

2. λj (ϕj(ξ)−max{ϕ1, . . . , ϕn}) = 0.

3. g′(ζ) =
n∑

j=1

λjh(ζ)ϕ′j(ζ).

Now we are ready to prove our result about annihilators.

Theorem 1. If f̂ ∈ X is a solution of problem (2), then there exists a

non-negative vector λ̂ = (λ̂1, . . . , λ̂n) such that

f̂ ∈ (span{τ bλw, w ∈ D})⊥.

and
λ̂j(‖f‖L2(µj) − δj) = 0, j = 1, . . . , n.
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Proof. For x ∈ X write

g(x) = ‖f̂ + x‖2
L2(µ0), ϕj(x) =

‖f̂ + x‖2
L2(µj)

δ2
j

, j = 1, . . . , n.

Remark that the function

ψx(t) =
f̂(t) + x(t)

max
{√

ϕ1(x), . . . ,
√

ϕn(x)
}

is admissible in problem (2). This implies that the function

h(x) =
g(x)

max{ϕ1(x), . . . , ϕn(x)}
attains its maximum at x = 0. Since all the functions g, ϕ1, . . . , ϕn

are obviously Frechet differentiable at x = 0 (since f̂ is clearly non-
trivial), we are in the conditions of Corollary 1, and, therefore, there are
λ1, . . . , λn satisfying statements 1 and 2 of Corollary 1. Since clearly

max
1≤j≤n

{‖f̂‖2
L2(µj)

δ2
j

}
= 1,

we have h(0) = ‖f̂‖2
L2(µ0). Write

(4) λ̂j =
‖f̂‖2

L2(µ0)

δ2
j

λj, j = 1, . . . , n.

Then it follows from Corollary 1 that for every u ∈ X

(5) −
∫

D0

uf̂ dµ0 +
n∑

j=1

λ̂j

∫

Dj

uf̂ dµj =

∫

D

uf̂ dµ̃ = 0.

Using Fubini’s theorem we obtain

0 =

∫

D

f̂(z)

(∫

D

u(w)K(z, w) dν(w)

)
dµ̃(z)

=

∫

D

u(w)

∫

D

f̂(z)K(w, z) dµ̃(z) dν(w).

Since ∫

D

f̂(z)K(w, z) dµ̃(z) ∈ X,

the last equality implies∫

D

f̂(z)K(w, z) dµ̃(z) = 0.
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Finally, for every w ∈ D we have

(6) 0 =

∫

D

f̂(z)K(w, z) dµ̃(z)

=

∫

D

f̂(τ)

∫

D

K(z, τ)K(w, z) dµ̃(z) dν(τ) = 〈f̂ , τ
bλ
w〉.

¤
Note that it follows from (4) that

(7) ‖f̂‖2
L2(µ0) =

n∑
j=1

λ̂jδ
2
j .

In reality this equality holds on a much wider set of functions which we
call spectral functions of problem (2). They are defined as follows. We
say that a non-negative vector λ = (λ1, . . . , λn) belongs to the spectrum
of problem (2), if there exists an admissible for problem (2) function
f ∈ X such that

1. λj(‖f‖L2(µj) − δj) = 0.

2. f ∈ (span{τλ
w, w ∈ D})⊥.

In this case we call f a spectral function.
It is very easy to see that if λ = (λ1, . . . , λn) is in the spectrum of

problem (2) and f is a corresponding spectral function, then equation
(5) holds, namely

−
∫

D0

uf dµ0 +
n∑

j=1

λj

∫

Dj

uf dµj = 0.

Now the substitution u = f shows that (7) holds for any spectral
function, that is

‖f‖2
L2(µ0) =

n∑
j=1

λjδ
2
j .

Thus, we obtain the following result

Theorem 2. Let Λ be the spectrum of problem (2). Then

(8) sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f‖2
L2(µ0) = sup

λ∈Λ

n∑
j=1

λjδ
2
j .

We call a spectral point (λ̂1, . . . , λ̂n) extremal, if the maximum of the

right-hand side of (8) is attained at (λ̂1, . . . , λ̂n).
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3. Extremal Problems

3.1. Hadamard Type Problem in the Unit Ball of Cn. Let Bn

stand for the unit ball in Cn,

Bn =

{
z = (z1, . . . , zn) ∈ Cn : |z|2 =

n∑
j=1

|zj|2 < 1

}
.

Recall that the Hardy space Hp(Bn) consists of all functions f such
that

‖f‖p
Hp(Bn) = sup

0<r<1

∫

|z|=1

|f(rz)|p dσ(z) < ∞, 1 ≤ p < ∞,

‖f‖H∞(Bn) = sup
z∈Bn

|f(z)|,

where dσ(z) is the positive normalized rotationally invariant measure
on the unit sphere

S = { z = (z1, . . . , zn) ∈ Cn : |z| = 1 }.
It is well known that Hp(Bn)-functions have radial limits σ-almost
everywhere on the unit sphere S (see [14], sect 1.4.9), which are usually
denoted by the same letter f and

‖f‖p
Hp(Bn) =

∫

|z|=1

|f(z)|p dσ(z).

It is also well known that the reproducing kernel for the Hardy space
is

K(z, w) =
1

(1− 〈z, w〉)n

(see [14], sect 7.1.4), so that for every f ∈ Hp(Bn) and w ∈ Bn

f(w) =

∫

|z|=1

f(z)K(z, w) dσ(z).

Let 0 < r1 < ρ < r2 < 1, fr(z) = f(rz). Consider the following
Hadamard type extremal problem. Find

(9) sup
{ ‖fρ‖H2(Bn) : f ∈ H2(Bn), ‖frj

‖H2(Bn) ≤ δj, j = 1, 2
}

.

Theorem 3. Let 0 < r1 < ρ < r2 < 1 and δ1, δ2 > 0. Then

1. If s ∈ Z+ is such that
(

r1

r2

)s+1

<
δ1

δ2

<

(
r1

r2

)s

,
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then the unique extremal spectral point of (9) is
(

r2
2 − ρ2

r2
2 − r2

1

(
ρ

r1

)2s

,
ρ2 − r2

1

r2
2 − r2

1

(
ρ

r2

)2s
)

.

2. If δ1 > δ2, then the unique extremal spectral point of (9) is (0, 1).
3. If there is s ∈ Z+ such that

δ1

δ2

=

(
r1

r2

)s

,

then the set of extremal spectral point of (9) is (λ̂1, λ̂2), where

λ̂1, λ̂2 ≥ 0 and

(10) λ̂1r
2s
1 + λ̂2r

2s
2 = ρ2s.

Proof. Let σρ, σr1 and σr2 denote normalized Lebesgue surface area
measures on spheres of radii ρ, r1 andr2 respectively. Below we consider
them as measures on Bn. We have

µ̃ = −σρ + λ1σr1 + λ2σr2 , dµ̃w(z) = K(z, w) dµ̃(z).

Thus,

τλ
w =

∫

|z|≤1

K(z, τ) dµ̃w(τ)

=

∫

|z|≤1

K(z, τ)K(τ, w)(−dσρ(τ) + λ1dσr1(τ) + λ2dσr2(τ)).

Making the substitution τ = rη, we obtain
∫

|z|≤1

K(z, τ)K(τ, w) dσr(τ) =

∫

|z|=1

K(z, rη)K(rη, w) dσ(η)

=

∫

|z|=1

K(rz, η)K(η, rw) dσ(η) = K(rz, rw).

Hence

τλ
w = − 1

(1− ρ2〈z, w〉)n
+

λ1

(1− r2
1〈z, w〉)n

+
λ2

(1− r2
2〈z, w〉)n

.

The condition f ⊥ τλ
w for all w means that for all w

∫

|z|=1

(
− 1

(1− ρ2〈z, w〉)n
+

λ1

(1− r2
1〈z, w〉)n

+
λ2

(1− r2
2〈z, w〉)n

)
f(z) dσ(z) = 0.
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Consequently, for all w

(11) −f(ρ2w) + λ1f(r2
1w) + λ2f(r2

2w) = 0.

If

f(z) =
∞∑

j=0

∑

|α|=j

cαzα,

where α = (α1, . . . , αn), |α| = α1 + . . . + αn, and zα = zα1
1 . . . zαn

n , then
(11) means that

∞∑
j=0

(−ρ2j + λ1r
2j
1 + λ2r

2j
2 )

∑

|α|=j

cαwα = 0

for all w. It can be easily verified that there are no more than two
values of j for which

−ρ2j + λ1r
2j
1 + λ2r

2j
2 = 0.

Assume that m > k and

−ρ2k + λ1r
2k
1 + λ2r

2k
2 = 0,

−ρ2m + λ1r
2m
1 + λ2r

2m
2 = 0.

Then

(12)

λ1 =
r
2(m−k)
2 − ρ2(m−k)

r
2(m−k)
2 − r

2(m−k)
1

(
ρ

r1

)2k

,

λ2 =
ρ2(m−k) − r

2(m−k)
1

r
2(m−k)
2 − r

2(m−k)
1

(
ρ

r2

)2k

,

and functions satisfying (11) have the following form

f(z) =
∑

|α|=k

cαzα +
∑

|α|=m

cαzα.

Since

(13) ‖f(rjz)‖H2(Bn) = δj, j = 1, 2,

and monomials zα form an orthogonal system in H2(Bn) with

‖zα‖2
H2(Bn) =

n!α!

(n + |α| − 1)!
,

(see [14], sect. 1.4.9) we have

(14) r2k
j dk + r2m

j dm = δ2
j , j = 1, 2,
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where

(15) ds =
n!

(n + s− 1)!

∑

|α|=s

|cα|2α!, s = k, m.

Solving (14) for dk, dm we obtain

dk =
δ2
1r

2m
2 − δ2

2r
2m
1

r2k
1 r2k

2 (r
2(m−k)
2 − r

2(m−k)
1 )

,

dm =
δ2
2r

2k
1 − δ2

1r
2k
2

r2k
1 r2k

2 (r
2(m−k)
2 − r

2(m−k)
1 )

.

Since dk, dm ≥ 0 we have
(

r1

r2

)m

≤ δ1

δ2

≤
(

r1

r2

)k

.

Assume that for some s = 0, 1, . . . ,

(16)

(
r1

r2

)s+1

<
δ1

δ2

<

(
r1

r2

)s

.

It follows from Theorem 2 that in order to find extremal spectral points
we are to find

sup
k,m∈Z+

k≤s, m≥s+1

(λ1δ
2
1 + λ2δ

2
2),

where λ1, λ2 are defined by (12). We have

λ1δ
2
1 + λ2δ

2
2 = λ1δ

2
2

((
δ1

δ2

)2

−
(

r1

r2

)2k
)

+
ρ2kδ2

2

r2k
2

.

Fix k ≤ s. Then we can write

λ1 = ωα(t)

(
ρ

r1

)2k

,

where

ωα(t) =
1− tα

1− t
, t =

(
r1

r2

)2(m−k)

, α =
log ρ/r2

log r1/r2

.

Observe that 0 < α < 1. It can be easily shown that ωα(t) is a
decreasing function for 0 < t < 1. Thus, λ1 increases as m → ∞.
Since (

δ1

δ2

)2

−
(

r1

r2

)2k

< 0,

for a fixed k ≤ s the maximum of λ1δ
2
1 +λ2δ

2
2 is attained at m = s+1.
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Now fix m = s + 1. Using the representations

λ2 = ωβ(t)

(
ρ

r2

)2m

, β =
log ρ/r1

log r2/r1

,

λ1δ
2
1 + λ2δ

2
2 = λ2δ

2
1

((
δ2

δ1

)2

−
(

r2

r1

)2m
)

+
ρ2mδ2

1

r2m
1

,

we obtain that the maximum of λ1δ
2
1 +λ2δ

2
2 is attained at k = s. Thus,

λ̂1 =
r2
2 − ρ2

r2
2 − r2

1

(
ρ

r1

)2s

,

λ̂2 =
ρ2 − r2

1

r2
2 − r2

1

(
ρ

r2

)2s

,

Suppose that for some s = 1, 2, . . .

δ1

δ2

=

(
r1

r2

)s

.

Then

sup
k,m∈Z+

k≤s, m≥s+1

(λ1δ
2
1 + λ2δ

2
2) = sup

k,m∈Z+
k≤s−1, m≥s

(λ1δ
2
1 + λ2δ

2
2) = δ2

2

(
ρ

r2

)2s

,

and the coordinates of extremal points (λ̂1, λ̂2) satisfy equality (10).
Thus, this situation is included in the case 3.

If δ1 = δ2 (s = 0), then k = 0 and

sup
m∈Z
m≥1

(λ1δ
2
1 + λ2δ

2
2) = δ2

1(λ̂1 + λ̂2) = δ2
1,

since

λ̂1 =
r2
2 − ρ2

r2
2 − r2

1

, λ̂2 =
ρ2 − r2

1

r2
2 − r2

1

.

That is, again this situation is described in the case 3.
Finally, suppose that there is only one s such that

−ρ2s + λ1r
2s
1 + λ2r

2s
2 = 0.

Then any function satisfying (11) has the following form

f(z) =
∑

|α|=s

cαzα.

If λ1, λ2 > 0, then it follows from (13) that

δ1

δ2

=

(
r1

r2

)s

.
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Thus, for all λ̂1, λ̂2 > 0 satisfying (10)

λ̂1δ
2
1 + λ̂2δ

2
2 = δ2

2

(
λ̂1

δ2
1

δ2
2

+ λ̂2

)
= δ2

2

(
ρ

r2

)2s

.

The case when λ1 = 0 or λ2 = 0 may be considered in a similar
way. ¤

3.2. Generalized Schwarz lemma in the Hardy space. Recall
that the classical Schwarz lemma states that an analytic function f
which takes the unit disk D = {z ∈ C : |z| < 1} into itself and vanishes
at the origin, satisfies the inequality

|f(z)| ≤ |z|

for all z in the unit disk. Of course, this result is strongly related to
the following extremal problem. Given a ∈ D find

sup
f∈H∞
f(0)=0

|f(a)|.

There are several papers where similar results were considered for
Hardy and Bergman spaces in connection with optimal recovery in
both one and several dimensional cases (see, for example, [11]–[13]).

Here we consider the following problem. Let a ∈ D and Γ be a circle
inside of the unit disk, µ be the normalized Lebesgue measure on Γ,
and δ > 0. Find

(17) sup

{ ∫

Γ

|f |2 dµ : f ∈ H2, ‖f‖H2 ≤ 1, |f(a)| ≤ δ

}
.

The special case of this problem when Γ degenerates to a point was
considered in [13].

To simplify the notation we will consider the case when the circle Γ
passes through the origin and its center lies on the real axis, so that

Γ = { z ∈ C : |z − ρ| = ρ },

0 < ρ < 1/2. In general case the argument goes along similar lines but
computations are longer.

To solve problem (17) we once again use Theorem 1. In our case the
measure µ0 is the normalized Lebesgue measure on Γ, µ1 is the unit
point mass at a, and µ2 is the normalized Lebesgue measure on the
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unit circle T. Thus,

τλ
w = − 1

2π

∫

Γ

1

1− zτ̄
· 1

1− τw̄

|dτ |
|τ − ρ| + λ1

1

1− zā
· 1

1− aw̄

+
λ2

2π

∫

|τ |=1

1

1− zτ̄
· 1

1− τw̄
|dτ |

= − 1

1− zρ− ρw̄
+

λ1

(1− zā)(1− aw̄)
+

λ2

1− zw̄
.

The existence of an extremal function in problem (17) easily follows
from the standard compactness argument. By Theorem 1 every ex-
tremal function satisfies the following equation

(18)
1

1− ρw
f

(
ρ

1− ρw

)
= λ1

f(a)

1− āw
+ λ2f(w)

for some λ1, λ2 ≥ 0 and all w ∈ D. Our next step is to describe the
spectrum and spectral functions of problem (17). Spectral functions are
H2 functions of norm not exceeding 1 satisfying the condition |f(a)| ≤ δ
and equation (18).

Let

b =
1−

√
1− 4ρ2

2ρ
.

It is easily verified that b is the Denjoy-Wolff point (see [2]) of the
following self-mapping of D

z 7→ ρ

1− ρz
.

It is also easy to see that the disk bounded by the circle Γ is a hyperbolic
neighborhood of b. Consider the following functions

(19) ϕj(z) =

√
1− b2

1− bz

(
b− z

1− bz

)j

, j = 0, 1, . . . .

These functions form an orthonormal system in H2, and, since any H2-
function which is orthogonal to all ϕj must vanish at b together with
all its derivatives, they form an orthonormal basis of H2. Moreover,
they are eigenfunctions of the operator

(20) Tf(z) =
1

1− ρz
f

(
ρ

1− ρz

)
.

Indeed, using the fact that

(21)
ρ

1− ρb
= b,
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we have

Tϕj(z) =
1

1− ρz
·

√
1− b2

1− b
ρ

1− ρz




b− ρ

1− ρz

1− b
ρ

1− ρz




j

=
1

1− bρ

√
1− b2

1− bz

(
(b− ρ)− bρz

(1− bρ)− bρz

)j

= αjϕj(z),

where

(22) αj =
b2j

1− ρb
.

Note in passing (though we will not use it explicitly) that the above
argument shows that the operator T is self-adjoint.

The next two theorems give a description of the spectrum of the
problem (17).

Theorem 4. Let a 6= b. 1. If
∣∣∣∣a−

ρ

1− ρ2

∣∣∣∣ ≥
ρ2

1− ρ2
,

or

δ >

√
|a|2ρ2 − |ρ− a|2
aρ + āρ− |a|2 ,

then the spectrum of problem (17) consists of two parts Λ = Λ1 ∪ Λ2,
where

Λ1 = { (0, αj) : |ϕj(a)| ≤ δ } ,

Λ2 =
{

(λ1, λ2) : λ1, λ2 > 0, F (λ2) = δ−2, λ1 = h(λ2)
}

,

where

F (λ) =
∞∑

j=0

|ϕj(a)|2
(αj − λ)2h2(λ), h(λ) =

( ∞∑
j=0

|ϕj(a)|2
αj − λ

)−1

.

2. If

(23)

∣∣∣∣a−
ρ

1− ρ2

∣∣∣∣ <
ρ2

1− ρ2
,

and

(24) δ ≤
√
|a|2ρ2 − |ρ− a|2
aρ + āρ− |a|2 ,
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then the spectrum of problem (17) includes in addition the point

Λ3 =

{(
aρ + āρ− |a|2

ρ2
, 0

)}
.

Proof. There are the following three possible cases: I. λ1 = 0, II. both
λ1 and λ2 are non-trivial. III. λ2 = 0.

I. λ1 = 0. In this case the corresponding spectral functions are
eigenfunctions of operator (20), defined by (19) for which

|ϕj(a)| =
√

1− b2

|1− ab|

∣∣∣∣
b− a

1− ab

∣∣∣∣
j

≤ δ.

This shows that Λ1 is a part of the spectrum.
II. Let λ1 and λ2 be non-trivial. Write the decomposition of the

Cauchy kernel centered at a in the basis {ϕj}

(25)
1

1− āw
=

∞∑
j=0

ϕj(a)ϕj(w) =
∞∑

j=0

√
1− b2

1− ab

(
b− a

1− ab

)j

ϕj(w).

Suppose that cj-s are the Fourier coefficients of f in the basis {ϕj},
that is

f =
∞∑

j=0

cjϕj.

Equations (18) and (25) imply

(26) αjcj = λ1f(a)ϕj(a) + λ2cj.

Since a 6= b, ϕj(a) 6= 0. Further, λ1 6= 0 implies |f(a)| = δ 6= 0.
Therefore, λ2 6= αj. Hence,

cj = λ1
f(a)ϕj(a)

αj − λ2

, f(a) = f(a)λ1

∞∑
j=0

|ϕj(a)|2
αj − λ2

,

(27) λ1 = h(λ2).

The condition λ1 > 0 implies that λ2 can not be bigger than α0. Since
λ2 6= 0, ‖f‖H2 = 1. Thus,

(28) F (λ2) = δ−2.

III. λ2 = 0. In this case (18) turns into

1

1− ρz
f

(
ρ

1− ρz

)
= λ1

f(a)

1− āz
.
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Substituting w =
ρ

1− ρz
we obtain

f(w) =
λ1f(a)ρ2

āρ + (ρ− ā)w
.

This function is in H2 if and only if

(29)

∣∣∣∣a−
ρ

1− ρ2

∣∣∣∣ <
ρ2

1− ρ2
.

If w = a, this implies

λ1 =
aρ + āρ− |a|2

ρ2
.

It is easy to show that the condition ‖ f ‖H2≤ 1 yields

(30) δ ≤
√
|a|2ρ2 − |ρ− a|2
aρ + āρ− |a|2 .

If equations (29) and (30) are satisfied, then

(
aρ + āρ− |a|2

ρ2
, 0

)
is

a spectral point of the problem (17) and

f(w) =
(aρ + āρ− |a|2)δ
āρ + (ρ− ā)w

is the corresponding spectral function. ¤

Theorem 5. Let a = b,

Λ1 = { (0, αj) : j = 1, 2, ...} ,

Λ2 =
{

((1− b2)(α0 − αj), αj), j = 1, 2, . . .
}

.

Then the spectrum of problem (17) is Λ = Λ1 ∪ Λ2, if δ <
1√

1− b2
,

and Λ = Λ1 ∪ Λ2 ∪ {(0, α0)}, if δ ≥ 1√
1− b2

.

Proof. In the considered case ϕj(a) = 0, j = 1, 2, . . . , so the same
argument as in the beginning of the proof of the previous theorem
shows that Λ1 in the spectrum and (0, α0) is in the spectrum if δ ≥
|ϕ0(b)| = 1√

1− b2
.
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Further, in our case (26) turns into

(α0 − λ2)c0 = λ1f(a)
1√

1− b2
=

λ1c0

1− b2
,

(αj − λ2)cj = 0, j = 1, 2, . . . .

Now the statement about the Λ2-part of the spectrum is straightfor-
ward. ¤

We will show below that Λ2 is the most important part of the spec-
trum. Equations (27) and (28) determine Λ2. In general, these equa-
tions may have infinite number of solutions, but this does not happen
if the point a lies outside Γ.

Proposition 1. If a lies outside Γ, then F (λ) →∞ as λ → 0.

Proof. Observe that if a lies outside Γ, then
∣∣∣∣

b− a

1− ab

∣∣∣∣ ≥ b.

Write

(31) γ =

∣∣∣∣
b− a

1− ab

∣∣∣∣ ,

F̂ (λ) =

∑∞
j=0

γ2j

(b2j − λ)2

(∑∞
j=0

γ2j

b2j − λ

)2 .

Then

F (λ) =
|1− ab|2
1− b2

F̂ (λ(1− bρ)).

Thus, it suffices to prove that F̂ (λ)
λ→0−→∞. First, we note that

F̂ (b2k) =
1

γ2k

k→∞−→ ∞.

Let b2k+2 < λ < b2k. We have∣∣∣∣∣
∞∑

j=0

γ2j

b2j − λ

∣∣∣∣∣ ≤
∞∑

j=0

γ2j

|b2j − λ| .

Obviously, for such λ

γ2k+2

λ− b2k+2
≥ γ2k+2

b2k+2

b2

1− b2
,
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or

(32)
γ2k+2

b2k+2
≤ 1− b2

b2

γ2k+2

λ− b2k+2
.

Now (32) yields

∞∑

j=k+2

γ2j

λ− b2j
≤

∞∑

j=k+2

γ2j

λ− b2k+4
≤

∞∑

j=k+2

γ2j

b2k+2 − b2k+4

<
γ2k+2

b2k+2(1− γ2)(1− b2)
≤ 1

b2(1− γ2)

γ2k+2

λ− b2k+2
.

Further,

k−1∑
j=0

γ2j

b2j − λ
≤

k−1∑
j=0

γ2j

b2j − b2k
≤ 1

1− b2

γ2k

b2k
− 1

γ2

b2
− 1

<
b2

(1− b2)(γ2 − b2)

γ2k

b2k

Also,
γ2k

b2k − λ
≥ 1

1− b2

γ2k

b2k
.

Therefore,
k−1∑
j=0

γ2j

b2j − λ
≤ b2

γ2 − b2

γ2k

b2k − λ
.

Finally, we see that there is a constant M independent of k such that
if b2k+2 < λ < b2k, then

(33)

∣∣∣∣∣
∞∑

j=0

γ2j

b2j − λ

∣∣∣∣∣ ≤ M

(
γ2k

b2k − λ
+

γ2k+2

λ− b2k+2

)
,

and, therefore,

(34) F̂ (λ) ≥
γ2k

(b2k − λ)2
+

γ2k+2

(λ− b2k+2)2

M2

(
γ2k

b2k − λ
+

γ2k+2

λ− b2k+2

)2

≥
γ2k

(b2k − λ)2
+

γ2k+2

(λ− b2k+2)2

2M2

(
γ4k

(b2k − λ)2
+

γ4k+4

(λ− b2k+2)2

)

≥ 1

2M2γ2k

k→∞−→ ∞.
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¤

Corollary 2. If a lies outside Γ, then there is only a finite number of
spectral points with λ1λ2 6= 0.

Proof. Note that the function

(35) g(λ) =
∞∑

j=0

|ϕj(a)|2
αj − λ

is monotone and increases from −∞ to +∞ when λ ∈ (αj+1, αj). Let
ζj be the only zero of g on the interval (αj+1, αj). F (λ) is analytic
in (ζj+1, ζj) and has poles at the endpoints of this interval. This im-
plies that equation (28) has at most finitely many solutions in each
interval (ζj+1, ζj), j = 0, 1, . . . . Now the result follows directly from
Proposition 1.

¤

Now we will use Theorem 2 to describe the extremal points of the
spectrum.

Proposition 2. If δ ≥ |ϕ0(a)|, then (0, α0) is the extremal point of the
spectrum.

Proof. We claim that ϕ0 is the solution of the similar extremal problem
without any constraint at a

(36) sup

{∫

Γ

|f |2 dµ : f ∈ H2, ‖f‖H2 ≤ 1,

}
.

Indeed, a standard compactness argument shows that problem (36) has
a solution. Theorem 1 implies that Euler’s equations of (36) has the
form (18) with λ1 = 0. Now Theorem 2 implies that α0 is the maximum
value for problem (36) and ϕ0 is the function where the maximum is
attained.

The condition δ ≥ |ϕ0(a)| implies that ϕ0 is admissible for problem
(17), and the result follows. ¤

Proposition 3. If a = b and δ < 1/
√

1− b2, then the extremal spectral
point of (17) is

(λ̂1, λ̂2) = ((1− b2)(α0 − α1), α1).

Proof. The proof follows directly from Theorems 2 and 5. ¤

Let us show that if δ < |ϕ0(a)|, then Λ1 does not contain extremal
points of the spectrum. We will use the following result.
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Proposition 4. Let a 6= b. For every δ < |ϕ0(a)| equation (28) has
exactly one solution on the interval (ζ0, α0).

Proof. It was shown in Corollary 2 that the function

g(λ) =
∞∑

j=0

|ϕj(a)|2
αj − λ

monotonically increases when λ ∈ (α1, α0), vanishes at ζ0, and g(λ) ≥
0, if λ ∈ (ζ0, α0).

Consider the function F (λ) from Proposition 1 for λ ∈ (ζ0, α0). Then

F ′(λ) = G(λ)h3(λ),

where

G(λ) =
∞∑

j=0

|ϕj(a)|2
(αj − λ)3

∞∑
j=0

|ϕj(a)|2
αj − λ

−
( ∞∑

j=0

|ϕj(a)|2
(αj − λ)2

)2

.

For every λ ∈ (ξ0, α0) we have

G(λ) =
|ϕ0(a)|2

(α0 − λ)3

∞∑
j=1

|ϕj(a)|2
αj − λ

+
∞∑

j=1

|ϕj(a)|2
(αj − λ)3

∞∑
j=0

|ϕj(a)|2
αj − λ

− 2
|ϕ0(a)|2

(α0 − λ)2

∞∑
j=1

|ϕj(a)|2
(αj − λ)2

−
( ∞∑

j=1

|ϕj(a)|2
(αj − λ)2

)2

< 0.

Since, obviously, F (α0) =
1

|ϕ0(a)|2 and F (λ) → +∞ as λ → ξ0+, the

result follows. ¤
Proposition 5. If δ < |ϕ0(a)|, then Λ1 does not contain extremal
spectral points.

Proof. First, suppose that a 6= b. It suffices to prove that

(37) max
(λ1,λ2)∈Λ

(λ1δ
2 + λ2) > α1.

It follows from Proposition 4 that equation (28) has a solution λ∗2 be-
tween ζ0 and α0. Let (λ∗1, λ

∗
2) be the corresponding spectral point. Since

ζ0 > α1, λ∗1δ
2 + λ∗2 > α1.

If a = b the result follows from Proposition 3. ¤
Proposition 6. Let a 6= b. If δ ≤ |ϕ1(a)|, then the extremal spec-

tral point (λ̂1, λ̂2) is unique, belongs to Λ2 and is determined by the

condition ζ0 < λ̂2 < α0.
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Proof. It follows from (27) and (28) that

(38) λ1δ
2 + λ2 =

δ√√√√
∞∑

j=0

|ϕj(a)|2
(αj − λ2)2

+ λ2 ≤ δ|α1 − λ2|
|ϕ1(a)| + λ2.

For λ2 ≤ α1 the right-hand side of (38) is an increasing linear function
of λ2 which is equal to α1 at λ2 = α1. We see that the function

λ1δ
2 + λ2 restricted to Λ2 attains its maximum at a point (λ̂1, λ̂2),

where λ̂2 ∈ (α1, α0). Moreover, since λ1 ≥ 0, λ̂2 ∈ (ζ0, α0). The
existence and uniqueness of such a point follow from Proposition 4.

Finally let us show that even if the point Λ3 belongs to the spectrum,
the condition δ ≤ |ϕ1(a)| prevents this point from being the point of
maximum of the linear form λ1δ

2 + λ2.
First we observe that the disk (23) is the hyperbolic neighborhood

of b given by

(39)

∣∣∣∣
b− a

1− ab

∣∣∣∣ < b2.

Suppose that a is in the disk (23). We will show that

λ1δ
2 < α1.

Then the same arguments as the one which precedes Proposition 4
shows that the point Λ3 cannot be the point of maximum. Equations
(21) and (39) imply

λ1δ
2 =

aρ + āρ− |a|2
ρ2

δ2 ≤ ρ2 − |ρ− a|2
ρ2

|ϕ1(a)|2

=
ρ2 − |ρ− a|2

ρ2

1− b2

|1− ab|2
∣∣∣∣

b− a

1− ab

∣∣∣∣
2

<
ρ2 − |ρ− a|2

ρ2

1− b2

|1− ab|2 b4

We are to show that the right-hand side of the last inequality does not
exceed

α1 =
b2

1− bρ
=

b3

ρ
.

That is, we are to prove that

ρ2 − |ρ− a|2
ρ

1− b2

|1− ab|2 b < 1.

Since

|1− ab| ≥ 1− |a|b, |ρ− a| ≥ ρ− |a|,
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it suffices to show that

(40)
ρ2 − (ρ− |a|)2

ρ

1− b2

(1− |a|b)2
b < 1.

Using equation (21), it is easy to verify that the maximum of the func-
tion

ρ2 − (ρ− |a|)2

(1− |a|b)2

as a function of |a| is attained at |a| = b. Now substituting |a| = b
into the left-hand side of (40) and once again using the relation ρ =
b(1 + b2)−1, we obtain

(2ρb− b2)b

(1− b2)ρ
= b2 < 1,

which is exactly what we wanted to show. ¤

Proposition 7. Assume that |ϕ1(a)| < δ < |ϕ0(a)| and

γ =

∣∣∣∣
b− a

1− ab

∣∣∣∣ ≥ b2/3,

then the conclusion of Proposition 6 is valid, that is, the extremal spec-

tral point (λ̂1, λ̂2) is unique, belongs to Λ2 and is determined by the

condition that ζ0 < λ̂2 < α0.

Proof. Using the fact that g(ζ0) = 0, we have

|ϕ0(a)|2
α0 − ζ0

=
∞∑

j=1

|ϕj(a)|2
ζ0 − α0

=
1

ζ0

∞∑
j=1

|ϕ0(a)|2γ2j

1− α0

ζ0

≥ |ϕ0(a)|2
ζ0

∞∑
j=1

γ2j =
|ϕ0(a)|2γ2

ζ0(1− γ2)
.

Consequently,

1

α0 − ζ0

≥ γ2

ζ0(1− γ2)
,

which yields ζ0 ≥ α0γ
2.

On the other hand, since γ ≥ b2/3 it follows from (38) that for all
spectral points from Λ2 such that λ2 ≤ α1

λ1δ
2 + λ2 ≤ δα1

|ϕ0(a)| <
|ϕ0(a)|α1

|ϕ0(a)| =
α0b

2

γ
≤ γ2α0 ≤ ζ0.
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It follows from Proposition 4 that there is the spectral point (λ̂1, λ̂2) ∈
Λ2 such that ζ0 < λ̂2 < α0. Then

λ̂1δ
2 + λ̂2 > λ̂2 > ζ0.

¤

4. Optimal Recovery Method

In this section we construct optimal recovery methods corresponding
to the extremal problems considered in the previous section. We begin
with the following general result which will be our main tool (several
results of this type may be found in [7], [5], [10]).

Theorem 6. Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, such that
the value of the extremal problem

(41) ‖f0‖2
L2(µ0) → max,

n∑
j=1

λ̂j‖fj‖2
L2(µj)

≤
n∑

j=1

λ̂jδ
2
j , f ∈ X,

is the same as in (2). Moreover, assume that for every ỹ =
(ỹ1, . . . , ỹn) ∈ Y1 × . . . × Yn, where Yj are almost everywhere dense
in L2(µj), there exists fey which is a solution of the extremal problem

(42)
n∑

j=1

λ̂j‖fj − ỹj‖2
L2(µj)

→ min, f ∈ X.

Moreover, let Â : L2(µ1)× . . .×L2(µn) → L2(µ0) be a linear continuous
operator, where the norm in L2(µ1)× . . .× L2(µn) is defined as

‖y‖ =

( n∑
j=1

‖yj‖2
L2(µj)

)1/2

,

such that for all ỹ = (ỹ1, . . . , ỹn) ∈ Y1 × . . .× Yn

Â(ỹ) = (fey)0.

Then

E(X,D, µ, δ) = sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0)

and the method Â(y) is optimal.

Proof. For every method A and for every f ∈ X such that ‖fj‖L2(µj) ≤
δj, j = 1, . . . , n, we have

2‖f0‖L2(µ0) ≤ ‖f0−A(0)‖L2(µ0)+‖−f0−A(0)‖L2(µ0) ≤ 2e(X,D, µ, δ, A).
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Hence, for every method A

e(X,D, µ, δ, A) ≥ sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0).

Taking the infimum in A, we obtain

(43) E(X,D, µ, δ) ≥ sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0).

Further, consider the linear space E = L2(µ1) × . . . × L2(µn) with
the semi-inner product

(y1, y2)E =
n∑

j=1

λ̂j(y
1
j , y

2
j )L2(µj),

where y1 = (y1
1, . . . , y

1
n), y2 = (y2

1, . . . , y
2
n). Now (42) can be written in

the form
‖f̃ − ỹ‖2

E → min, f ∈ X,

where f̃ = (f1, . . . , fn). Since fey is a solution of (42) it can be easily
verified that for all f ∈ X

(f̃ey − ỹ, f̃)E = 0,

where f̃ey = ((fey)1, . . . , (fey)n). Consequently,

‖f̃ − ỹ‖2
E = ‖f̃ − f̃ey‖2

E + ‖f̃ey − ỹ‖2
E.

Thus, for all f ∈ X

(44) ‖f̃ − f̃ey‖2
E ≤ ‖f̃ − ỹ‖2

E =
n∑

j=1

λ̂j‖fj − ỹj‖2
L2(µj)

.

Let f ∈ X and y ∈ L2(µ1)× . . .×L2(µn) be such that ‖fj−yj‖L2(µj) ≤
δj, j = 1, . . . , n. Then for any ε > 0 there exists ỹ = (ỹ1, . . . , ỹn) ∈
Y1 × . . .× Yn such that ‖yj − ỹj‖L2(µj) < ε, j = 1, . . . , n. Thus,

‖fj− ỹj‖L2(µj) ≤ ‖fj−yj‖L2(µj)+‖yj− ỹj‖L2(µj) ≤ δj +ε, j = 1, . . . , n.

Set z = f − fey. Then (44) implies that
n∑

j=1

λ̂j‖zj‖2
L2(µj)

= ‖z̃‖2
E ≤

n∑
j=1

λ̂j(δj + ε)2.

We have the following estimate for the method Â

‖f0 − Â(y)‖L2(µ0) ≤ ‖f0 − Â(ỹ)‖L2(µ0) + ‖Â(y − ỹ)‖L2(µ0)

≤ ‖z0‖L2(µ0) + ‖Â‖nε.
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Taking into account that for all C1, C2 > 0

sup
z∈XPn

j=1
bλj‖zj‖2L2(µj)

≤C1

‖z0‖2
L2(µ0) =

C1

C2

sup
z∈XPn

j=1
bλj‖zj‖2L2(µj)

≤C2

‖z0‖2
L2(µ0),

we obtain

‖f0 − Â(ỹ)‖2
L2(µ0) = ‖z0‖2

L2(µ0)

≤ sup
z∈XPn

j=1
bλj‖zj‖2L2(µj)

≤Pn
j=1

bλj(δj+ε)2

‖z0‖2
L2(µ0)

=

∑n
j=1 λ̂j(δj + ε)2

∑n
j=1 λ̂jδ2

j

sup
z∈XPn

j=1
bλj‖zj‖2L2(µj)

≤Pn
j=1

bλjδ2
j

‖z0‖2
L2(µ0)

=

∑n
j=1 λ̂j(δj + ε)2

∑n
j=1 λ̂jδ2

j

sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖2
L2(µ0).

Since ε > 0 is arbitrary we obtain

E(X,D, µ, δ) ≤ e(X,D, µ, δ, Â) ≤ sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0).

This and (43) imply

E(X,D, µ, δ) = sup
f∈X

‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0)

and Â is an optimal method. ¤

We will apply Theorem 6 to the construction of optimal recovery
method for the Hadamard type problem considered in section 3. Let

(λ̂1, λ̂2) =

(
r2
2 − ρ2

r2
2 − r2

1

(
ρ

r1

)2s

,
ρ2 − r2

1

r2
2 − r2

1

(
ρ

r2

)2s
)

,

if

(45)

(
r1

r2

)s+1

≤ δ1

δ2

<

(
r1

r2

)s

, s ∈ Z+,
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and (λ̂1, λ̂2) = (0, 1), if δ1 ≥ δ2. Consider the following extremal prob-
lem

(46) sup
{
‖fρ‖H2(Bn) : f ∈ H2(Bn), λ̂1‖fr1‖2

H2(Bn) + λ̂2‖fr2‖2
H2(Bn)

≤ λ̂1δ
2
1 + λ̂2δ

2
2

}
.

Proposition 8. The values of extremal problems (9) and (46) are the
same.

Proof. Apply Theorem 1 to the measures µ0 = dsρ and µ1 = λ̂1σr1 +

λ̂2σr2 . It is possible to show the same way (11) was derived, that
there exists ν > 0 such that Euler’s equation for problem (46) has the
following form

(47) −f(ρ2w) + ν(λ̂1f(r2
1w) + λ̂2f(r2

2w)) = 0.

Let f̂ be the spectral function of problem (9) corresponding to the

spectral point (λ̂1, λ̂2). Obviously, f̂ is admissible for problem (46).
Therefore, ν = 1 belongs to the spectrum of (46). It suffices to show
that there are no spectral points of (46) that are greater than one.
Indeed, by Theorem 2 the value of problem (46)

max{ν(λ̂1δ
2 + λ̂2)},

where ν runs over the spectrum of (46).
Similar to the proof of Theorem 3 it may be shown that there is at

least one j such that

−ρ2j + νλ̂1r
2j
1 + νλ̂2r

2j
2 = 0.

Thus,

ν =

(
λ̂1

(
r1

ρ

)2j

+ λ̂2

(
r2

ρ

)2j
)−1

.

If δ1 ≥ δ2, then

ν =

(
ρ

r2

)2j

≤ 1.

Suppose that condition (45) is fulfilled. Then

λ̂1r
2s
1 + λ̂2r

2s
2 = ρ2s,

λ̂1r
2(s+1)
1 + λ̂2r

2(s+1)
2 = ρ2(s+1).

Consider the function

χ(t) = λ̂1e
at + λ̂2e

bt,
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where

a = log
r1

ρ
, b = log

r2

ρ
.

We have

χ(s) = χ(s + 1) = 1.

Since χ is a convex function for all j ∈ Z+, χ(j) ≥ 1. It means that
ν ≤ 1. ¤

Theorem 7. Let (λ̂1, λ̂2) be the same as in problem (46). Then the
error of optimal recovery is given by

√
λ̂1δ2

1 + λ̂2δ2
2

and the method

Â(y1, y2)(z) =
∞∑

j=0

1

λ̂1r
2j
1 + λ̂2r

2j
2

∑

|α|=j

(λ̂1r
2j
1 c(1)

α + λ̂2r
2j
2 c(2)

α )zα,

where

c(k)
α =

(n + |α| − 1)!

n!α!r
|α|
k

〈yk(rkz), zα〉L2(σ), k = 1, 2,

is optimal.

Proof. Let y1(r1z) and y(r2z) be arbitrary functions from L2(σ). Con-
sider the extremal problem

(48) λ̂1‖f(r1z)− y1(r1z)‖2
L2(σ) + λ̂2‖f(r2z)− y2(r2z)‖2

L2(σ) → min,

f ∈ H2(Bn).

Write yk(rkz), k = 1, 2,

yk(rkz) =
∞∑

j=0

rj
k

∑

|α|=j
α≥0

c(k)
α zα + ỹk(z),

where ỹk are orthogonal to all holomorphic polynomials in L2(σ). Then
problem (48) may be written in the form

λ̂1

∞∑
j=0

r2j
1 n!

(n + j − 1)!

∑

|α|=j

α!|fα − c(1)
α |2 + ‖ỹ1‖2

L2(σ)

+ λ̂2

∞∑
j=0

r2j
2 n!

(n + j − 1)!

∑

|α|=j

α!|fα − c(2)
α |2 + ‖ỹ2‖2

L2(σ) → min,

f ∈ H2(Bn).
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It is easy to show that for all functions y1(r1z), y2(r2z) ∈ L2(σ) with

finite number of coefficients c
(k)
α 6= 0, k = 1, 2, the solution of this

problem is

f(z) =
∞∑

j=0

1

λ̂1r
2j
1 + λ̂2r

2j
2

∑

|α|=j

(λ̂1r
2j
1 c(1)

α + λ̂2r
2j
2 c(2)

α )zα.

Since such functions are dense in L2(σ) the required statement follows
from Theorem 6. ¤

Let us turn to the optimal recovery method corresponding to the
generalized Schwarz lemma. Consider the extremal problem

(49) sup

{ ∫

Γ

|f |2 dµ : f ∈ H2, λ̂1|f(a)|2 + λ̂2‖f‖2
H2 ≤ λ̂1δ

2 + λ̂2

}
,

where as before µ is the normalized Lebesgue measure on Γ and (λ̂1, λ̂2)
is an extremal spectral point for problem (17).

Proposition 9. Suppose that either a 6= b and δ ≤ |ϕ1(a)|, or |ϕ1(a)| <
δ < |ϕ0(a)| and γ =

∣∣∣∣
a− b

1− ab

∣∣∣∣ ≥ b2/3. Then the values of extremal

problems (17) and (49) are the same.

Proof. The same argument as in the proof of Proposition 8 shows that
there is a positive ν such that the Euler equation for problem (17) is

(50)
1

1− ρw
f

(
ρ

1− ρw

)
= ν

(
λ̂1

f(a)

1− āw
+ λ̂2f(w)

)
.

Also similarly to the proof of Proposition 8 it suffices to prove that
there are no spectral points of (49) that are greater than one.

Now, let ν belong to the spectrum of (49). First, let us show that a
function which satisfies (50) does not vanish at a. Indeed, let f(a) = 0.
Then f is an eigenfunction of operator T . As it was shown above,
functions (19) are the only eigenfunctions of T . Since these functions
may vanish only at b and b 6= a, we come to a contradiction.

Since f(a) 6= 0, the argument in the proof of Theorem 4 (equation
(27)) shows that

(51) νλ̂1 = h(νλ̂2).

Propositions 6 and 7 imply that ζ0 < λ̂2 < α0. Note that the function
h decreases on the interval (ζ0, α0) and is negative for λ > α0. If we

suppose that ν > 1, then h(νλ̂2) either negative or strictly less than

λ̂1. The contradiction shows that ν ≤ 1. ¤
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Proposition 10. If a = b and δ < ϕ(b) = 1/
√

1− b2, then the values
of extremal problems (17) and (49) are the same.

Proof. The equation (50) is still satisfied with a = b. The same argu-
ment as the one in the proof of Proposition 9 shows that here it also
suffices to prove that ν ≤ 1. By Proposition 3

(52) (λ̂1, λ̂2) = ((1− b2)(α0 − α1), α1).

If f(b) = 0, then (50) implies that f is an eigenfunction of T with eigen-
value να1. Since ϕ0(b) 6= 0, we have να1 = αj, j ≥ 1. Consequently,
ν ≤ 1.

If f(b) 6= 0, then (51) is satisfied. In our case it turns into

νλ̂1 = (α0 − νλ̂2)(1− b2).

Substituting λ̂1 and λ̂2 from (52), we obtain that ν = 1.
¤

Theorem 8. Suppose that one of the following conditions is satisfied

1. δ ≥ |ϕ0(a)|,
2. δ ≤ |ϕ1(a)|,
3. |ϕ1(a)| < δ < |ϕ0(a)|, γ ≥ b2/3,
4. a = b,

and (λ̂1, λ̂2) the corresponding extremal spectral point. Then the error
of optimal recovery is given by

√
λ̂1δ2 + λ̂2

and the method

(53) Â(y)(z) =
λ̂1y

λ̂1 + λ̂2(1− |a|2)
1− |a|2
1− az

is optimal.

Proof. For an arbitrary y ∈ C consider the extremal problem

(54) λ̂1|f(a)− y|2 + λ̂2‖f‖2
H2 → min, f ∈ H2.

Using the representation

f(z) =
∞∑

j=0

cjψj(z),

where

ψj(z) =

√
1− |a|2
1− az

(
a− z

1− az

)j

,
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problem (54) may be written in the form

λ̂1

∣∣∣∣∣
c0√

1− |a|2 − y

∣∣∣∣∣

2

+ λ̂2

∞∑
j=0

|cj|2 → min, f ∈ H2.

It is easy to see that the solution of this problem is

f(z) =
λ̂1y

λ̂1 + λ̂2(1− |a|2)
1− |a|2
1− az

.

By Propositions 2, 9, and 10, Theorem 6 is applicable and the required
statement immediately follows from it. ¤

Note that for a = b the optimal method of recovery (53) does not
depend on δ and has the form

Â(y)(z) =
(1− b2)2

1− bz
.

5. Concluding Remarks

In this section we would like to discuss several open problems related
to the results obtained above.

1. Our first problem is related to Theorem 6. This theorem gives
an effective way of constructing optimal recovery algorithms. Unfor-
tunately, every time it is necessary to verify whether the values of the
dual extremal problem and the problem with a single “mixed” con-
straint are the same. It would be convenient to have some general
condition under which this coincidence takes place for n > 2 (for n = 2
see [7]).

2. Returning to the Generalized Schwarz Lemma, problem (17), it
would be desirable to identify the extremal spectral point in all possible
cases. We have shown that in a number of cases the extremal spectral

point is the only point in Λ2 such that ζ0 < λ̂2 < α0. Our attempts to
find a nontrivial-case when this point is not extremal failed. Thus, we
are tempted to conjecture that the point of Λ2 with the biggest λ2 is
always extremal.

Conjecture. If a 6= b and δ < |ϕ0(a)|, the point in Λ2 such that

ζ0 < λ̂2 < α0 is always the spectral extremal point for problem (17).

3. It is natural to ask which choice of a minimizes the value of
problem (17) (of course, this choice of a leads to the least optimal
recovery error). It follows from above discussion that the point b plays
a special role.
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Problem. Does the choice a = b always lead to the least mean square
optimal recovery error?

4. Finally, if in problem (17) we replace the constraint |f(a)| ≤ δ
with

1

2πr

∫

|z−a|=r

|f(z)|2|d(z − a)| ≤ δ, (0 < r < 1− |a|),

then the problem becomes even more difficult. The reason is that in

the right hand side of Euler’s equation the term λ1
f(a)

1− āz
is replaced

with
λ1

1− āz
f

(
a− r2z

1− āz

)
.

Thus, finding the spectrum in this case is reduced to finding eigen-
values of an operator which is a linear combination of two compact
non-commuting operatoprs.

It would be very interesting to find the eigenbasis which corresponds
to this problem and to find the solution.
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