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As a consequence, optimal methods are obtained for recovering 
derivatives of functions from Sobolev classes by the information 
of their Fourier transforms given with stochastic errors. A similar 
problem is considered for solutions of the heat equation.
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1. Introduction

There are several approaches to recovery problems from inaccurate information. One of them con-
cerns the case when the error in the initial data is deterministic. Quite a lot of works are devoted to 
this case. The main results can be found in [8], [9], [10], [12], [14] and the literature cited there.

Another approach is related to the fact that the initial information is considered to be given with a 
random error. There are also many papers dedicated to this topic. The following are the closest to the 
setting under consideration: [11], [2], [1], [15], [16], [13], [4]. A distinctive specificity of this paper is 
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that the information used here is not random vectors, but random functions. Moreover, we consider 
the set of various random functions not only with the Gaussian noise.

2. General setting

Denote by W the set of functions x(·) ∈ L2(R) for which∫
R

ν(t)|x(t)|2 dt < ∞,

where ν(·) is continuous and positive almost everywhere. Put

W =
{

x(·) ∈ W :
∫
R

ν(t)|x(t)|2 dt ≤ 1

}
.

Consider the problem of optimal recovery of the operator �x(·) = μ(·)x(·) on the class W by functions 
x(·) given with random errors (we assume that μ(·) is continuous and such that � maps W into 
L2(R)). More precisely, for a fixed δ > 0 and every x(·) ∈ W we consider the set of random functions

Yδ(x(·)) = { yξ (·) ∈ L2(R) : Myξ (·) = x(·), Var yξ (·) ≤ δ2 a.e. },
where MX is the expectation of X and Var X = M|X − MX |2 is the variance of X . We will also 
assume that the set of these random functions and the corresponding probability measures are such 
that they allow for a change in integration so that the equalities are valid

M

∫
R

p(t)yξ (t)dt =
∫
R

p(t)Myξ (t)dt, p(t) ∈ L2(R), (1)

and

M

∫
R

|yξ (t)|2 dt =
∫
R

M|yξ (t)|2 dt. (2)

As recovery methods we consider all possible mappings ϕ : L2(R) → L2(R). The error of 
a method ϕ is defined as

e(�, W , δ,ϕ) =
⎛⎜⎝ sup

x(·)∈W
yξ (·)∈Yδ(x(·))

M
(
‖�x(·) − ϕ(yξ (·))(·)‖2

L2(R)

)⎞⎟⎠
1/2

.

The problem is to find the error of optimal recovery

E(�, W , δ) = inf
ϕ : L2(R)→L2(R)

e(�, W , δ,ϕ) (3)

and a method on which this infimum is attained which is called optimal.
A similar setting was studied in [11], but there, instead of the set Yδ(x(·)), the set of random 

functions yξ (·) = x(·) + ξ(·), where ξ(·) is the Gaussian noise, was considered. In [11], an optimal 
method was found among linear methods and it was shown that it is asymptotically optimal. Note, 
that even in the simplest one-dimensional case the optimal method is nonlinear (see [12]). The main 
difference of our approach is that by expanding the set of admissible random functions (not limited 
to Gaussian noise) we were able to obtain an exact lower bound (this was the most difficult part of 
the proof).

We assume that |μ(·)| and ν(·) are even functions, |μ(t)| > 0 almost everywhere, and |μ(·)|/√ν(·)
is a monotonically decreasing function on R+ = [0, +∞). Put
2
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f (s) =
∫

|t|≤s

(√
ν(s)

|μ(s)|
|μ(t)|√

ν(t)
− 1

)
ν(t)dt. (4)

It is easy to check that f (·) is a monotonically increasing function. Assume that f (s) → +∞ as 
s → +∞. Then for any δ > 0 the equation f (s) = δ−2 has a unique solution tδ .

Theorem 1. Let |μ(·)| and ν(·) be even functions, |μ(t)| > 0 almost everywhere, and |μ(·)|/√ν(·) is a mono-
tonically decreasing function on R+ . Assume that f (s) → +∞ as s → +∞. Then for all δ > 0

E(�, W , δ) = δ

( ∫
|t|≤tδ

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
dt

)1/2

, (5)

where tδ is the unique solution of the equation f (s) = δ−2 . Moreover, the method

ϕ(yξ (·))(t) =
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
+

μ(t)yξ (t)

is optimal (a+ = max{a, 0}).

Proof. 1. The lower bound. Consider the set [−A, −̃a] ∪ [̃a, A] ⊂R, 0 < ã < A. Let us divide it on 2N
parts by the points ±x j , j = 0, 1, . . . , N , where

x j = ã + j
A − ã

N
.

Set a = (a1, . . . , a2N),

xa(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a2 j−1, t ∈ [x j−1, x j), j = 1, . . . N,

a2N−1, t = A,

a2 j, t ∈ [−x j,−x j−1), j = 1, . . . , N,

a0, t = −̃a,

0, t /∈ [−A, −̃a] ∪ [̃a, A].
Let τ = (τ1, . . . , τ2N), τ1 ≥ τ2 ≥ . . . ≥ τ2N > 0, and xτ (·) ∈ W . Put

B = { xa(·) ∈ W : a j = ±τ j, j = 1, . . . ,2N }.
Set

p j = δ2

δ2 + τ 2
j

, j = 1, . . . ,2n.

Due to the monotony conditions of τ j , we have

0 < p1 ≤ . . . ≤ p2n < 1.

Any x(·) ∈ B can be written in the form

x(·) =
2n∑
j=1

s j(x)τ je j(·),

where s j(x) ∈ {−1, 1}, and

e2 j−1(·) = χ[x j−1,x j)(·), j = 1, . . . N − 1, eN(·) = χ[xN−1,xN ](·)
e2(·) = χ[−x1,−x0](·), e2 j(·) = χ[−x j,−x j−1)(·), j = 2, . . . , N
3
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(χ	(·) is the characteristic function of the set 	).
For each x(·) ∈ B we define the distribution η(x)(·) in the following way:

η(x)(·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, with probability p1,
s1(x)τ1

1 − p1
e1(·) with probability p2 − p1,

2∑
j=1

s j(x)τ j

1 − p j
e j(·), with probability p3 − p2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2n−1∑
j=1

s j(x)τ j

1 − p j
e j(·), with probability p2n − p2n−1,

2n∑
j=1

s j(x)τ j

1 − p j
e j(·), with probability 1 − p2n.

Thus, we have the following distribution for η(x)(t) if t ∈ [x j−1, x j):

η(x)(t) =
⎧⎨⎩0, with probability p2 j−1,

s2 j−1(x)τ2 j−1

1 − p2 j−1
, with probability 1 − p2 j−1,

j = 1, . . . , N − 1,

if t ∈ [xN−1, xN ]:

η(x)(t) =
⎧⎨⎩0, with probability p2N−1,

s2N−1(x)τ2N−1

1 − p2N−1
, with probability 1 − p2N−1,

if t ∈ [−x1, −x0]:

η(x)(t) =
⎧⎨⎩0, with probability p2,

s2(x)τ2

1 − p2
, with probability 1 − p2,

and if t ∈ [−x j, −x j−1):

η(x)(t) =
⎧⎨⎩0, with probability p2 j,

s2 j(x)τ2 j

1 − p2 j
, with probability 1 − p2 j,

j = 2, . . . , N,

if t /∈ [−A, −̃a] ∪ [̃a, A]: η(x)(t) = 0.
It is easy to verify that Mη(x)(·) = x(·). Moreover,

Varη(x)(t) =
{

δ2, t ∈ [−A, −̃a] ∪ [̃a, A],
0, t /∈ [−A, −̃a] ∪ [̃a, A].

Let us verify that (1) and (2) hold for η(x)(·). It is sufficient to check the validity of these equalities 
for each interval (x j−1, x j), (−x j, −x j−1), j = 1, . . . , N . Let t ∈ (x j−1, x j). Then for p(·) ∈ L2(R) we 
have

x j∫
x j−1

p(t)η(x)(t)dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, with probability p2 j−1,

x j∫
x j−1

s2 j−1(x)τ2 j−1

1 − p2 j−1
dt, with probability 1 − p2 j−1.
4
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Thus,

M

( x j∫
x j−1

p(t)η(x)(t)dt

)
=

x j∫
x j−1

p(t)x(t)dt.

On the other hand,

x j∫
x j−1

p(t)Mη(x)(t)dt =
x j∫

x j−1

p(t)x(t)dt.

We have

x j∫
x j−1

|η(x)(t)|2 dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, with probability p2 j−1,

x j∫
x j−1

τ 2
2 j−1

(1 − p2 j−1)
2

dt, with probability 1 − p2 j−1.

Therefore,

M

( x j∫
x j−1

|η(x)(t)|2 dt

)
=

x j∫
x j−1

τ 2
2 j−1

1 − p2 j−1
dt.

At the same time

x j∫
x j−1

M|η(x)(t)|2 dt =
x j∫

x j−1

τ 2
2 j−1

1 − p2 j−1
dt.

The proof for the interval (−x j, −x j−1) is completely similar. Consequently, η(x)(·) satisfies conditions 
(1) and (2). Thus, η(x)(·) ∈ Yδ(x(·)) for all x(·) ∈ B .

Let ϕ be an arbitrary recovery method. Taking into account that the set B is finite (with 22N

elements), we have

e2(�, W , δ,ϕ) ≥ sup
x(·)∈B

M‖�x(·) − ϕ(η(x)(·))(·)‖2
L2(R)

= sup
x(·)∈B

(2N+1∑
j=1

(p j − p j−1)

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

sk(x)τk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

)

≥ 1

22N

∑
x(·)∈B

(2N+1∑
j=1

(p j − p j−1)

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

sk(x)τk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

)

= 1

22N

2N+1∑
j=1

(p j − p j−1)
∑

x(·)∈B

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

sk(x)τk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

; (6)

here p0 = 0 and p2N+1 = 1. Set

Bs1,...,s j−1 = { x(·) ∈ B : s1(x) = s1, . . . , s j−1(x) = s j−1 },
j = 1, . . . , 2N + 1 (for j = 1 this set coincides with B). Then
5
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p j − p j−1

22N

∑
x(·)∈B

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

sk(x)τk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

= p j − p j−1

22N

×
∑

s1,...,s j−1

∑
x∈Bs1,...,s j−1

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

.

If x(·) ∈ Bs1,...,s j−1 , then

x(·) =
j−1∑
k=1

skτkek(·) + z(x)(·), z(x)(·) =
2N∑

k= j

sk(x)τkek(·).

Moreover, with every element

j−1∑
k=1

skτkek(·) + z(x)(·) ∈ Bs1,...,s j−1

the set Bs1,...,s j−1 contains the element

j−1∑
k=1

skτkek(·) − z(x)(·).

Thus,

p j − p j−1

22N

∑
s1,...,s j−1

∑
x∈Bs1,...,s j−1

∥∥∥∥�x(·) − ϕ

( j−1∑
k=1

skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

= p j − p j−1

22N

∑
s1,...,s j−1

∑
x∈Bs1,...,s j−1

∥∥∥∥�

( j−1∑
k=1

skτkek(·) + z(x)(·)
)

− ϕ

( j−1∑
k=1

skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

= p j − p j−1

22N

∑
s1,...,s j−1

∑
x∈Bs1,...,s j−1

∥∥∥∥�

( j−1∑
k=1

skτkek(·)
)

+ �z(x)(·)

− ϕ

( j−1∑
k=1

skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

= p j − p j−1

22N+1

∑
s1,...,s j−1

∑
x∈Bs1,...,s j−1

(∥∥∥∥�

( j−1∑
k=1

skτkek(·)
)

+ �z(x)(·)

− ϕ

( j−1∑
k=1

skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

+
∥∥∥∥�

( j−1∑
k=1

skτkek(·)
)

− �z(x)(·)

− ϕ

( j−1∑ skτk

1 − pk
ek(·)

)
(·)

∥∥∥∥2

L2(R)

)

k=1

6
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≥ p j − p j−1

22N

∑
s1,...,s j−1

∑
x∈Bs1,...,s j−1

‖�z(x)(·)‖2
L2(R)

= p j − p j−1

22N

∑
x∈B

‖�z(x)(·)‖2
L2(R) = (p j − p j−1)

2N∑
k= j

μkτ
2
k ,

where

μ2 j−1 =
x j∫

x j−1

|μ(t)|2 dt, μ2 j =
−x j−1∫
−x j

|μ(t)|2 dt, j = 1, . . . , N.

Substituting this estimate into (6), we get

e2(�, W , δ,ϕ) ≥
2N+1∑

j=1

(p j − p j−1)

2N∑
k= j

μkτ
2
k

=
2N∑
j=1

(
p j

2N∑
k= j

μkτ
2
k − p j

2N∑
k= j+1

μkτ
2
k

)
=

2N∑
j=1

p jμ jτ
2
j =

2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j .

Since the method ϕ was chosen arbitrarily, we have

E2(�, W , δ) ≥ sup
τ1≥...≥τ2N>0

xτ (·)∈W

2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j . (7)

The condition xτ (·) ∈ W means that∫
R

ν(t)|xτ (t)|2 dt =
2N∑
j=1

ν jτ
2
j ≤ 1,

where

ν2 j−1 =
x j∫

x j−1

ν(t)dt, ν2 j =
−x j−1∫
−x j

ν(t)dt, j = 1, . . . , N.

Hence,

E2(�, W , δ) ≥ sup
τ1≥...≥τ2N>0∑2N

j=1 ν jτ
2
j ≤1

2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j .

Let τ = (τ1, . . . , τk, 0, . . . , 0), 1 ≤ k < 2N , τ1 ≥ . . . ≥ τk > 0, and

k∑
j=1

ν jτ
2
j ≤ 1.

For sufficiently small ε > 0 we put τε = (τ1(ε), . . . , τ2N (ε)) where

τ j(ε) =
{√

τ 2
j − ε, 1 ≤ j ≤ k,

C
√

ε, k + 1 ≤ j ≤ 2N,
7
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and

C =
( ∑k

j=1 ν j∑2N
j=k+1 ν j

)1/2

.

Then

2N∑
j=1

ν jτ
2
j (ε) =

k∑
j=1

ν jτ
2
j − ε

k∑
j=1

ν j + C2ε

2N∑
j=k+1

ν j =
k∑

j=1

ν jτ
2
j ≤ 1.

For ε < τ 2
k /(1 + C2) we have√
τ 2

k − ε > C
√

ε.

Consequently, for such ε

τ1(ε) ≥ . . . ≥ τ2N(ε) > 0.

It follows from (7) that

E2(�, W , δ) ≥
2N∑
j=1

δ2

δ2 + τ 2
j (ε)

μ jτ
2
j (ε).

Passing to the limit as ε → 0, we obtain

E2(�, W , δ) ≥
k∑

j=1

δ2

δ2 + τ 2
j

μ jτ
2
j .

Thus,

E2(�, W , δ) ≥ sup
τ1≥...≥τ2N≥0∑2N

j=1 ν jτ
2
j ≤1

2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j . (8)

Let the piecewise continuous function x(·) be such that |x(·)| is an even function monotonically 
decreasing on R+ and∫

R

ν(t)|x(t)|2 dt < 1. (9)

Consider the integral

I =
∫
R

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt.

Let us fix ε > 0 and find A > 0, 0 < ã < A such that

I1 =
∫

[−A,−̃a]∪[̃a,A]

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt > I − ε. (10)

It is obvious that

I2 =
∫

[−A,−̃a]∪[̃a,A]
ν(t)|x(t)|2 dt < 1.
8
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We will approximate these integrals by integral sums over partitions of T N , representing segments 
[x j−1, x j], [−x j, −x j−1], j = 1, . . . , N , and points

t2 j−1 = ã + (2 j − 1)
A − ã

2N
, t2 j = −t2 j−1, j = 1, . . . , N.

For any ε1 > 0, there is such a N1 that for all N > N1

1

N

2N∑
j=1

δ2

δ2 + τ 2
j

|μ(t j)|2τ 2
j > I1 − ε1, (11)

where τ j = |x(t j)|. Moreover, there is such a N2 that for all N > N2 for some ω > 0 the inequality

1

N

2N∑
j=1

ν(t j)τ
2
j < 1 − ω

holds.
By the mean value theorem for integrals, there are ξ j such that ξ2 j−1 ∈ [x j−1, x j], ξ2 j ∈

[−x j, −x j−1], j = 1, . . . , N , and μ j = |μ(ξ j)|2/N . Using the same arguments we obtain that there 
are η j such that η2 j−1 ∈ [x j−1, x j], η2 j ∈ [−x j, −x j−1], j = 1, . . . , N , and ν j = ν(η j)/N . Due to the 
uniform continuity of the functions |μ(·)| and ν(·) on the segment [−A, A] for any ε2 > 0, there is 
N3 such that for all s1, s2 ∈ [−A, A], |s1 − s2| < 1/N3, inequalities

||μ(s1)|2 − |μ(s2)|2| < ε2, |ν(s1) − ν(s2)| < ε2 (12)

hold.
Put

M = vraisup
t∈[̃a,A]

|x(t)|2

(due to the monotonous decrease of |x(·)| on R+ , M < ∞). Choose ε2 < ω/(2M). Let N >

max{N1, N2, N3}. Then ν j = ν(η j)/N < ν(t j)/N + ε2/N . Consequently,

2N∑
j=1

ν jτ
2
j ≤ 1

N

2N∑
j=1

(ν(t j) + ε2)τ
2
j ≤ 1

N

2N∑
j=1

ν(t j)τ
2
j + 2Mε2 < 1. (13)

It follows from (12) that μ j = |μ(ξ j)|2/N > |μ(t j)|2/N − ε2/N . Therefore,

2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j ≥ 1

N

2N∑
j=1

δ2

δ2 + τ 2
j

(|μ(t j)|2 − ε2)τ
2
j ≥ 1

N

2N∑
j=1

δ2

δ2 + τ 2
j

|μ(t j)|2τ 2
j − 2Mε2.

Taking into account (13) and (11), it follows from (8) that

E2(�, W , δ) ≥
2N∑
j=1

δ2

δ2 + τ 2
j

μ jτ
2
j ≥ 1

N

2N∑
j=1

δ2

δ2 + τ 2
j

|μ(t j)|2τ 2
j − 2Mε2 ≥ I1 − ε1 − 2Mε2.

Due to the fact that ε1 and ε2 can be chosen arbitrarily small, we get

E2(�, W , δ) ≥ I1 ≥ I − ε.

Since ε can be chosen arbitrarily small, we obtain

E2(�, W , δ) ≥ sup
x(·)∈W0∫

ν(t)|x(t)|2 dt<1

∫
R

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt, (14)
R

9
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where W0 is the set of piecewise continuous functions x(·) such that |x(·)| is an even function mono-
tonically decreasing on R+ .

We show that the strict inequality on the right side of (14) can be replaced by a non-strict one. 
Let x(·) ∈ W0 and∫

R

ν(t)|x(t)|2 dt = 1.

Consider the function y(·) = (1 + ε)−1/2x(·), ε > 0. Then it follows from (14) that

E2(�, W , δ) ≥ 1

1 + ε

∫
R

δ2

δ2 + |x(t)|2
1 + ε

|μ(t)|2|x(t)|2 dt.

Since

1

δ2 + |x(t)|2
1 + ε

≥ 1

δ2 + |x(t)|2 ,

we have

E2(�, W , δ) ≥ 1

1 + ε

∫
R

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt.

Passing ε to zero, we get

E2(�, W , δ) ≥
∫
R

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt.

Thus,

E2(�, W , δ) ≥ sup
x(·)∈W0∫

R ν(t)|x(t)|2 dt≤1

∫
R

δ2

δ2 + |x(t)|2 |μ(t)|2|x(t)|2 dt. (15)

2. The upper bound. Let us find the error of the methods having the form

ϕ(yξ (·))(·) = α(·)μ(·)yξ (·).
Put zξ (·) = yξ (·) − x(·). Then Mzξ (·) = 0, Var zξ (·) ≤ δ2. Using the well-known bias-variance decom-
position we have

e2(�, W , δ,ϕ) = sup
x(·)∈W

yξ (·)∈Yδ(x(·))
M

(
‖�x(·) − ϕ(yξ (·))(·)‖2

L2(R)

)

= sup
x(·)∈W

yξ (·)∈Yδ(x(·))
M

(
‖�x(·) − ϕ(x(·))(·) − ϕ(zξ (·))(·)‖2

L2(R)

)

= sup
x(·)∈W

yξ (·)∈Yδ(x(·))

(
‖�x(·) − ϕ(x(·))(·)‖2

L2(R) +M(‖ϕ(zξ (·))(·)‖2
L2(R))

−2MRe(ϕ(zξ (·))(·),�x(·) − ϕ(x(·))(·))
)

;
here (·, ·) is the standard scalar product in L2(R). It follows from the form of ϕ that
10
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MRe(ϕ(zξ (·))(·),�x(·) − ϕ(x(·))(·))
= ReM

(
α(·)μ(·)zξ (·),�x(·) − ϕ(x(·))(·)

)
= Re

(
α(·)μ(·)Mzξ (·),�x(·) − ϕ(x(·))(·)

)
= 0.

Due to the fact that M(|zξ (·)|2) = Var yξ (·), we have

e2(�, W , δ,ϕ) = sup
x(·)∈W

yξ (·)∈Yδ(x(·))

⎛⎝∫
R

|μ(t)|2|1 − α(t)|2|x(t)|2 dt

+
∫
R

|μ(t)|2|α(t)|2 Var yξ (t)dt

⎞⎠ = sup
x(·)∈W

∫
R

|μ(t)|2|1 − α(t)|2|x(t)|2 dt

+ δ2
∫
R

|μ(t)|2|α(t)|2 dt

Since ∫
R

|μ(t)|2|1 − α(t)|2|x(t)|2 dt =
∫
R

|μ(t)|2
ν(t)

|1 − α(t)|2ν(t)|x(t)|2 dt

≤ vraisup
t∈R

( |μ(t)|2
ν(t)

|1 − α(t)|2
)

,

we obtain

e2(�, W , δ,ϕ) ≤ vraisup
t∈R

( |μ(t)|2
ν(t)

|1 − α(t)|2
)

+ δ2
∫
R

|μ(t)|2|α(t)|2 dt.

Put

α(t) =
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
+

.

Due to the monotonous decreasing of the function |μ(·)|/√ν(·) we get

vraisup
t∈R

( |μ(t)|2
ν(t)

|1 − α(t)|2
)

= |μ(tδ)|2
ν(tδ)

.

Consequently,

e2(�, W , δ,ϕ) ≤ |μ(tδ)|2
ν(tδ)

+ δ2
∫

|t|≤tδ

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)2

dt = |μ(tδ)|2
ν(tδ)

+ δ2
∫

|t|≤tδ

|μ(t)|2
((

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
−

√
ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

+ ν(t)

|μ(t)|2
|μ(tδ)|2
ν(tδ)

)
dt = δ2

∫
|t|≤t

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
dt
δ

11
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+ |μ(tδ)|√
ν(tδ)

( |μ(tδ)|√
ν(tδ)

(
1 + δ2

∫
|t|≤tδ

ν(t)dt

)
− δ2

∫
|t|≤tδ

|μ(t)|√ν(t)dt

)

= δ2
∫

|t|≤tδ

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
dt + |μ(tδ)|2

ν(tδ)
(1 − δ2 f (tδ).

It follows from the definition of tδ that f (tδ) = δ−2. Thus,

e2(�, W , δ,ϕ) ≤ δ2
∫

|t|≤tδ

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
dt. (16)

Consider the function

x̂(t) = δ

((√
ν(tδ)

|μ(tδ)|
|μ(t)|√

ν(t)
− 1

)
+

)1/2

.

It is obvious that ̂x(·) ∈ W0. Moreover,∫
R

ν(t)|̂x(t)|2 dt = δ2
∫

|t|≤tδ

ν(t)

(√
ν(tδ)

|μ(tδ)|
|μ(t)|√

ν(t)
− 1

)
dt = 1.

Taking into account (16), it follows from (15) that

E2(�, W , δ) ≥
∫
R

δ2

δ2 + |̂x(t)|2 |μ(t)|2 |̂x(t)|2 dt

= δ2
∫

|t|≤tδ

|μ(t)|2
(

1 −
√

ν(t)

|μ(t)|
|μ(tδ)|√

ν(tδ)

)
dt

≥ e2(�, W , δ,ϕ) ≥ E2(�, W , δ).

This implies (5) and the optimality of the method ϕ . �
Now we consider some examples of the application of Theorem 1.

3. Recovery of functions and their derivatives from the Fourier transform given with random error

Denote by Wr
2(R) the set of functions x(·) ∈ L2(R) for which x(r−1)(·) is locally absolutely contin-

uous and x(r)(·) ∈ L2(R). Put

W r
2(R) = { x(·) ∈ Wr

2(R) : ‖x(r)(·)‖L2(R) ≤ 1 }.
Suppose that the Fourier transform F x(·) of the function x(·) ∈ W r

2(R) is given with a random error. 
We assume that instead of the function F x(·) we know a random function yξ (·) ∈ L2(R) such that 
Myξ (·) = F x(·) and Var yξ (·) ≤ δ2 almost everywhere. Using this information, it is required to recover 
the function Dkx(·) = x(k)(·), 0 ≤ k < r, in the L2(R)-metric.

The exact setting of the problem is as follows. For every x(·) ∈ W r
2(R) we consider the set of 

random functions

Y F
δ (x(·)) = { yξ (·) ∈ L2(R) :Myξ (·) = F x(·), Var yξ (·) ≤ δ2 a.e. }.

This set requires additional conditions given in the general setting (the validity of the equalities (1)
and (2)). Next, we define the error of the recovery method ϕ : L2(R) → L2(R) as follows
12
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e(Dk, W r
2(R), δ,ϕ) =

⎛⎜⎜⎝ sup
x(·)∈W r

2(R)

yξ (·)∈Y F
δ (x(·))

M
(
‖x(k)(·) − ϕ(yξ (·))(·)‖2

L2(R)

)⎞⎟⎟⎠
1/2

.

The problem is to find the error of optimal recovery

E(Dk, W r
2(R), δ) = inf

ϕ : L2(R)→L2(R)
e(Dk, W r

2(R), δ,ϕ)

and a method on which this infimum is attained.
It follows from the Parseval equality that

‖x(r)(·)‖2
L2(R) = 1

2π

∫
R

|t|2r |F x(t)|2 dt,

‖x(k)(·) − ϕ(yξ (·))(·)‖2
L2(R) = 1

2π

∫
R

|(it)k F (t) − Fϕ(yξ (·))(t)|2 dt.

Thus, the problem is reduced to problem (3) with ν(t) = t2r and μ(t) = (it)k . The function f (·) which 
was defined by (4), has the form

f (s) =
∫

|t|≤s

(
sr−k

|t|r−k
− 1

)
t2r dt = 2s2r+1 r − k

(2r + 1)(r + k + 1)
.

The equation f (s) = δ−2 has the unique solution

tδ =
(

(2r + 1)(r + k + 1)

2δ2(r − k)

) 1
2r+1

.

It follows from Theorem 1

Theorem 2. For all δ > 0 and 0 ≤ k < r

E(Dk, W r
2(R), δ) = (2r + 1)

2k+1
2(2r+1)√

2k + 1

(
2δ2 r − k

r + k + 1

) r−k
2(2r+1)

.

Moreover, the method

ϕ(yξ (·))(t) = F −1
(
(it)kα(t)yξ (t)

)
(t),

where

α(t) =
⎛⎝1 − tr−k

(
2δ2(r − k)

(2r + 1)(r + k + 1)

) r−k
2r+1

⎞⎠
+

,

is optimal.

Note that the optimal recovery method does not use all the information about random functions 
yξ (·), but only the information contained in the segment [−tδ, tδ]. Moreover, the more accurate the 
measurements (the smaller the variance δ2), the larger this segment becomes.

The deterministic case of this problem was considered in [5] (see also [7]).
13
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4. Recovery of the solution of the heat equation

The temperature distribution in an infinite rod is described by the equation

∂u

∂t
= ∂2u

∂t2
,

where u(·, ·) is the function on [0, ∞) ×R with a given initial temperature distribution

u(0, ·) = u0(·).
Consider the problem of recovering the temperature distribution at an instant of time T from 

information about the Fourier transform of the initial temperature distribution u0(·), given with a 
random error. We assume that the functions u0(·), given the initial temperature distribution, belong 
to the class W r

2(R). We define the error of the recovery method ϕ : L2(R) → L2(R) as follows

e(T , W r
2(R), δ,ϕ) =

⎛⎜⎜⎝ sup
u0(·)∈W r

2(R)

yξ (·)∈Y F
δ (u0(·))

M
(
‖u(T , ·) − ϕ(yξ (·))(·)‖2

L2(R)

)⎞⎟⎟⎠
1/2

.

The problem is to find the error of optimal recovery

E(T , W r
2(R), δ) = inf

ϕ : L2(R)→L2(R)
e(T , W r

2(R), δ,ϕ)

and a method on which this infimum is attained.
It is well known (see, for example, [3]) that for all t ≥ 0 the equality

F (u(t, ·))(λ) = e−λ2t F u0(λ)

holds. It follows from the Parseval equality that

‖u(T , ·) − ϕ(yξ (·))(·)‖2
L2(R) = 1

2π

∫
R

|e−λ2 T F u0(λ) − Fϕ(yξ (·))(λ)|2 dλ.

Thus, the problem is reduced to problem (3) with ν(t) = t2r and μ(t) = e−t2 T . The function f (·)
which was defined by (4), has the form

f (s) =
∫

|t|≤s

(
sres2 T

tret2 T
− 1

)
t2r dt = 2sres2 T

s∫
0

tre−t2 T dt − s2r+1

2r + 1
.

It is easy to verify that f (s) → +∞ as s → +∞ (the monotonous increase of f (·) was noted in the 
general case). Therefore, the equation f (s) = δ−2 has a unique solution, which we denote by tδ .

From Theorem 1 we obtain the following result:

Theorem 3. Put

α(t) =
(

1 − tret2 T

tr
δet2

δ T

)
+

.

Then the equality

E(T , W r
2(R), δ) = δ

( ∫
|t|≤t

e−2t2 T α(t)dt

)1/2
δ

14
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holds. Moreover, the method

ϕ(yξ (·))(t) = F −1
(

e−t2 T α(t)yξ (t)
)

(t)

is optimal.

The deterministic case of this problem was considered in [6].
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