Optimal Recovery of Operators and Multidimensional Carlson Type Inequalities

K. Yu. Osipenko ${ }^{1,}$
MATI - Russian State Technological University
Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow

Abstract

The paper is concerned with recovery problems of linear multiplier-type operators from noisy information on weighted classes of functions. Optimal methods of recovery are constructed. The dual extremal problem is closely connected with Carlson type inequalities.

Keywords: optimal recovery, linear operator, Fourier transform, inequalities for derivatives
2010 MSC: 41A65, 41A46, 49N30

1. General Setting

Let T be a nonempty set, Σ be the σ-algebra of subsets of T, and μ be a nonnegative σ-additive measure on Σ. We denote by $L_{p}(T, \Sigma, \mu)$ (or simply $L_{p}(T, \mu)$) the set of all Σ-measurable functions with values in \mathbb{R} or in \mathbb{C} for which

$$
\begin{aligned}
\|x(\cdot)\|_{L_{p}(T, \mu)} & =\left(\int_{T}|x(t)|^{p} d \mu(t)\right)^{1 / p}<\infty, \quad 1 \leq p<\infty \\
\|x(\cdot)\|_{L_{\infty}(T, \mu)} & =\underset{t \in T}{\operatorname{esssup}}|x(t)|<\infty, \quad p=\infty
\end{aligned}
$$

Put

$$
\begin{gathered}
\mathcal{W}=\left\{x(\cdot) \in L_{p}(T, \mu):\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)}<\infty\right\}, \\
W=\left\{x(\cdot) \in \mathcal{W}:\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)} \leq 1\right\},
\end{gathered}
$$

where $1 \leq p, r \leq \infty$, and $\varphi(\cdot)$ is a measurable function on T. Consider the problem of recovery of operator $\Lambda: \mathcal{W} \rightarrow L_{q}(T, \mu), 1 \leq q \leq \infty$, defined by equality $\Lambda x(\cdot)=\psi(\cdot) x(\cdot)$, where $\psi(\cdot)$ is a measurable function on T, on the

[^0]class W by the information about functions $x(\cdot) \in W$ given inaccurately. More precisely, we assume that for any function $x(\cdot) \in W$ we know $y(\cdot) \in L_{p}\left(T_{0}, \mu\right)$, where T_{0} is not empty μ-measurable subset of T, such that $\|x(\cdot)-y(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq$ $\delta, \delta \geq 0$. We want to approximate the value $\Lambda x(\cdot)$ knowing $y(\cdot)$.

As recovery methods we consider all possible mappings

$$
m: L_{p}\left(T_{0}, \mu\right) \rightarrow L_{q}(T, \mu)
$$

The error of a method m is defined as

$$
e(p, q, r, m)=\sup _{\substack{x(\cdot) \in W, y(\cdot) \in L_{p}\left(T_{0}, \mu\right) \\\|x(\cdot)-y(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta}}\|\Lambda x(\cdot)-m(y)(\cdot)\|_{L_{q}(T, \mu)}
$$

The quantity

$$
\begin{equation*}
E(p, q, r)=\inf _{m: L_{p}\left(T_{0}, \mu\right) \rightarrow L_{q}(T, \mu)} e(p, q, r, m) \tag{1}
\end{equation*}
$$

is known as the optimal recovery error, and a method on which this infimum is attained is called optimal.

Various settings of optimal recovery theory and examples of such problems may be found in [11], [12], [18], [17], [15], [13]. Much of them are devoted to optimal recovery of linear functionals. There are not so many results about optimal recovery of linear operators when non-Euclidean metrics is used ([12, Theorem 12 on p. 45], [10], [14]). In [14] we considered problem (1) when any two of p, q, and r coincide. Here we analyze the case when all metrics can be different and $1 \leq q<p, r<\infty$. We construct optimal method of recovery, find its error, and apply this result to obtain exact constants in Carlson type inequalities. The case $p=\infty$ and/or $r=\infty$ requires a slightly different approach. Some particular results of such kind may be found in $[7](T=\mathbb{Z})$ and $[8](T=\mathbb{R})$.

2. Main results

Let $\chi_{0}(\cdot)$ be the characteristic function of the set T_{0} :

$$
\chi_{0}(t)= \begin{cases}1, & t \in T_{0}, \\ 0, & t \notin T_{0}\end{cases}
$$

Theorem 1. Let $1 \leq q<p, r<\infty, \lambda_{1}, \lambda_{2} \geq 0, \lambda_{1}+\lambda_{2}>0, \varphi(t) \neq 0$ for almost all $t \in T \backslash T_{0}, \widehat{x}(t)=\widehat{x}\left(t, \lambda_{1}, \lambda_{2}\right) \geq 0$ be a solution of equation

$$
\begin{equation*}
-q|\psi(t)|^{q}+p \lambda_{1} x^{p-q}(t) \chi_{0}(t)+r \lambda_{2}|\varphi(t)|^{r} x^{r-q}(t)=0, \tag{2}
\end{equation*}
$$

and λ_{1}, λ_{2} such that

$$
\begin{gather*}
\int_{T_{0}} \widehat{x}^{p}(t) d \mu(t) \leq \delta^{p}, \quad \int_{T}|\varphi(t)|^{r} \widehat{x}^{r}(t) d \mu(t) \leq 1 \\
\lambda_{1}\left(\int_{T_{0}} \widehat{x}^{p}(t) d \mu(t)-\delta^{p}\right)=0, \quad \lambda_{2}\left(\int_{T}|\varphi(t)|^{r} \widehat{x}^{r}(t) d \mu(t)-1\right)=0 \tag{3}
\end{gather*}
$$

and $\lambda_{2}>0$, if $T \backslash T_{0} \neq \emptyset$. Then

$$
E(p, q, r)=\left(\frac{p \lambda_{1} \delta^{p}+r \lambda_{2}}{q}\right)^{1 / q}
$$

and the method

$$
\widehat{m}(y)(t)= \begin{cases}q^{-1} p \lambda_{1} \widehat{x}^{p-q}(t)|\psi(t)|^{-q} \psi(t) y(t), & t \in T_{0}, \psi(t) \neq 0 \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

is optimal recovery method.
To prove this theorem we need some preliminary results.

Lemma 1.

$$
\begin{equation*}
E(p, q, r) \geq \sup _{\substack{x(\cdot) \in W \\\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta}}\|\Lambda x(\cdot)\|_{L_{q}(T, \mu)} . \tag{5}
\end{equation*}
$$

The lower bound of type (5) is the well-known result which is usually applied to obtain the error of optimal recovery. In more or less general forms it was proved in many papers (see, for example, [14]).

The extremal problem which arises on the right-hand side of (5), known as the dual problem, may be written as

$$
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \rightarrow \max , \quad\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta, \quad\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)} \leq 1
$$

For $T_{0}=T \subset \mathbb{R}^{n}$ and $q=1$ problem (6) was examined in [2] in connection with Stechkin's problem.

We give a straightforward result (resembling the sufficient conditions in the Kuhn-Tucker theorem), which we will require in solving dual problems similar to (6).

Let $f_{j}: A \rightarrow \mathbb{R}, j=0,1, \ldots, n$, be functions defined on some set A. Consider the extremal problem

$$
\begin{equation*}
f_{0}(x) \rightarrow \max , \quad f_{j}(x) \leq 0, \quad j=1, \ldots, n, \quad x \in A \tag{7}
\end{equation*}
$$

and write down its Lagrange function

$$
\mathcal{L}(x, \lambda)=-f_{0}(x)+\sum_{j=1}^{n} \lambda_{j} f_{j}(x), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Lemma 2 ([14]). Assume that there exist $\widehat{\lambda}_{j} \geq 0, j=1, \ldots, n$, and an element $\widehat{x} \in$ A, admissible for problem (7), such that
(a) $\min _{x \in A} \mathcal{L}(x, \widehat{\lambda})=\mathcal{L}(\widehat{x}, \widehat{\lambda}), \quad \widehat{\lambda}=\left(\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{n}\right)$,
(b) $\sum_{j=1}^{n} \widehat{\lambda}_{j} f_{j}(\widehat{x})=0$.

Then \widehat{x} is an extremal element for problem (7).

Put

$$
F(u, v, \alpha)=-((1-\alpha) u+\alpha v)^{q}+a v^{p}+b u^{r}, \quad u, v \geq 0, \quad \alpha \in[0,1],
$$

where $a, b \geq 0$, and $1 \leq p, q, r<\infty$.
Lemma 3. For all $a, b \geq 0, a+b>0$, and all $1 \leq q<p, r<\infty$, there exists the unique solution $\widehat{u}>0$ of the equation

$$
\begin{equation*}
-q+p a u^{p-q}+r b u^{r-q}=0 \tag{8}
\end{equation*}
$$

Moreover, for all $u, v \geq 0$ and $\alpha=q^{-1} p a \widehat{u}^{p-q}=1-q^{-1} r b \widehat{u}^{r-q}$

$$
\begin{equation*}
F(\widehat{u}, \widehat{u}, \alpha) \leq F(u, v, \alpha) \tag{9}
\end{equation*}
$$

In particular, for all $u \geq 0$

$$
-\widehat{u}^{q}+a \widehat{u}^{p}+b \widehat{u}^{r} \leq-u^{q}+a u^{p}+b u^{r} .
$$

Proof. The existence of the unique solution of (8) follows from the fact that the continuous function $f(u)=p a u^{p-q}+r b u^{r-q}$ increases monotonically from 0 to $+\infty$.

Let us prove (9). The cases $a=0$ or $b=0$ are easily obtained by finding the minimum of $F(u, v, 0)=-u^{q}+b u^{r}$ if $a=0$ or $F(u, v, 1)=-v^{q}+a v^{p}$ if $b=0$. Assume that $a, b>0$. Then $\alpha \in(0,1)$. Let

$$
C>\max \left\{a^{-\frac{1}{p-q}}, b^{-\frac{1}{r-q}}\right\} .
$$

Then for $u \geq C$ and $v \leq u$ we have

$$
\begin{equation*}
F(u, v, \alpha) \geq-u^{q}+b u^{r}=u^{q}\left(-1+b u^{r-q}\right)>0 . \tag{10}
\end{equation*}
$$

If $v \geq C$ and $v \geq u$, then

$$
\begin{equation*}
F(u, v, \alpha) \geq-v^{q}+a v^{p}=v^{q}\left(-1+a v^{p-q}\right)>0 . \tag{11}
\end{equation*}
$$

Since $F(0,0, \alpha)=0$ we obtain that

$$
\inf _{(u, v) \in \mathbb{R}_{+}^{2}} F(u, v, \alpha)=\inf _{\substack{0 \leq u \leq C \\ 0 \leq v \leq C}} F(u, v, \alpha) .
$$

It follows from the Weierstrass extreme value theorem that there exist $0 \leq u_{0} \leq$ C and $0 \leq v_{0} \leq C$ such that

$$
\inf _{(u, v) \in \mathbb{R}_{+}^{2}} F(u, v, \alpha)=F\left(u_{0}, v_{0}, \alpha\right) .
$$

In view of (10) and (11) $u_{0}<C$ and $v_{0}<C$. We have

$$
\begin{aligned}
F_{u}(u, v, \alpha)=-q((1-\alpha) u+\alpha v)^{q-1} & (1-\alpha)+r b u^{r-1} \\
& =r b\left(-((1-\alpha) u+\alpha v)^{q-1} \widehat{u}^{r-q}+u^{r-1}\right) .
\end{aligned}
$$

Thus, for any $v_{0} \geq 0$ and sufficiently small $u>0 \quad F_{u}\left(u, v_{0}, \alpha\right)<0$. Consequently,

$$
F\left(u, v_{0}, \alpha\right)<F\left(0, v_{0}, \alpha\right)
$$

for sufficiently small u. It means that $0<u_{0}<C$. The similar arguments show that $0<v_{0}<C$. Hence

$$
F_{u}\left(u_{0}, v_{0}, \alpha\right)=F_{v}\left(u_{0}, v_{0}, \alpha\right)=0
$$

Since

$$
\begin{aligned}
F_{v}(u, v, \alpha)=-q((1-\alpha) u+\alpha v)^{q-1} & \alpha+\operatorname{pav}^{p-1} \\
& =p a\left(-((1-\alpha) u+\alpha v)^{q-1} \widehat{u}^{p-q}+v^{p-1}\right)
\end{aligned}
$$

we have

$$
\begin{align*}
& -\left((1-\alpha) u_{0}+\alpha v_{0}\right)^{q-1} \widehat{u}^{r-q}+u_{0}^{r-1}=0 \tag{12}\\
& -\left((1-\alpha) u_{0}+\alpha v_{0}\right)^{q-1} \widehat{u}^{p-q}+v_{0}^{p-1}=0 \tag{13}
\end{align*}
$$

Consequently,

$$
\frac{u_{0}^{r-1}}{v_{0}^{p-1}}=\widehat{u}^{r-p}
$$

Suppose that $p \leq r$. Substituting

$$
\begin{equation*}
u_{0}=\widehat{u}^{\frac{r-p}{r-1}} v_{0}^{\frac{p-1}{r-1}} \tag{14}
\end{equation*}
$$

into (13), we obtain the equality

$$
\left(\alpha v_{0}+(1-\alpha) \widehat{u}^{\frac{r-p}{r-1}} v_{0}^{\frac{p-1}{r-1}}\right)^{q-1} \widehat{u}^{p-q}=v_{0}^{p-1}
$$

This equality may be rewritten in the form

$$
\begin{equation*}
\left(\alpha+(1-\alpha) t^{\frac{p-r}{r-1}}\right)^{q-1}=t^{p-q} \tag{15}
\end{equation*}
$$

where $t=v_{0} \widehat{u}^{-1}$. It is easily seen that (15) has the unique solution $t=1$.
Consequently, $v_{0}=\widehat{u}$ and it follows by (14) that $u_{0}=\widehat{u}$.
If $p>r$, then we substitute

$$
v_{0}=\widehat{u}^{\frac{p-r}{p-1}} u_{0}^{\frac{r-1}{p-1}}
$$

into (12). Similar to the previous case we obtain the equality which may be written in the form

$$
\begin{equation*}
\left(\alpha s^{\frac{r-p}{p-1}}+1-\alpha\right)^{q-1}=s^{r-q} \tag{16}
\end{equation*}
$$

where $s=u_{0} \widehat{u}^{-1}$. The unique solution of (16) is $s=1$. Thus, for the case when $p>r$ we have the same solution of (12), (13) $u_{0}=v_{0}=\widehat{u}$. Hence, for all $u, v \geq 0$

$$
F(u, v, \alpha) \geq \inf _{(u, v) \in \mathbb{R}_{+}^{2}} F(u, v, \alpha)=F(\widehat{u}, \widehat{u}, \alpha) .
$$

Proof of Theorem 1.

1. Lower estimate. The extremal problem (6) (for convenience, we raise the quantity to be maximized to the q-th power) is as follows:

$$
\begin{align*}
& \int_{T}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max , \quad \int_{T_{0}}|x(t)|^{p} d \mu(t) \leq \delta^{p} \\
& \int_{T}|\varphi(t) x(t)|^{r} d \mu(t) \leq 1 \tag{17}
\end{align*}
$$

The Lagrange function for this problem reads as

$$
\mathcal{L}\left(x(\cdot), \lambda_{1}, \lambda_{2}\right)=\int_{T} L\left(t, x(t), \lambda_{1}, \lambda_{2}\right) d \mu(t)
$$

where

$$
L\left(t, x, \lambda_{1}, \lambda_{2}\right)=-|\psi(t) x|^{q}+\lambda_{1}|x|^{p} \chi_{0}(t)+\lambda_{2}|\varphi(t) x|^{r} .
$$

If $t \in T$ such that $\psi(t)=0$, then evidently $\widehat{x}(t)=0$ and for those t for all $x(\cdot) \in \mathcal{W}$

$$
L\left(t, 0, \lambda_{1}, \lambda_{2}\right) \leq L\left(t, x(t), \lambda_{1}, \lambda_{2}\right)
$$

Using this fact and Lemma 3, we obtain that there is the unique solution $\widehat{x}(\cdot)$ of (2) and, moreover, for almost all $t \in T$ and all $x(\cdot) \in \mathcal{W}$

$$
L\left(t, \widehat{x}(t), \lambda_{1}, \lambda_{2}\right) \leq L\left(t, x(t), \lambda_{1}, \lambda_{2}\right)
$$

Consequently,

$$
\mathcal{L}\left(\widehat{x}(\cdot), \lambda_{1}, \lambda_{2}\right) \leq \mathcal{L}\left(x(\cdot), \lambda_{1}, \lambda_{2}\right) .
$$

Taking into account (3) we obtain by Lemma 2 that $\widehat{x}(\cdot)$ is the extremal function in (17). It follows by (5) that

$$
E(p, q, r) \geq\left(\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)\right)^{1 / q}
$$

From (2) we have

$$
|\psi(t)|^{q} \widehat{x}^{q}(t)=q^{-1} p \lambda_{1} \widehat{x}^{p}(t) \chi_{T_{0}}(t)+q^{-1} r \lambda_{2}|\varphi(t)|^{r} \widehat{x}^{r}(t) .
$$

Integrating this equality over the set T, we obtain

$$
\begin{equation*}
\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)=\frac{p \lambda_{1} \delta^{p}+r \lambda_{2}}{q} . \tag{18}
\end{equation*}
$$

Thus,

$$
E(p, q, r) \geq\left(\frac{p \lambda_{1} \delta^{p}+r \lambda_{2}}{q}\right)^{1 / q}
$$

2. Upper estimate. To estimate the error of method (4) we need to find the value of the extremal problem:

$$
\begin{align*}
\int_{T_{0}} \mid \psi(t) x(t)- & \left.\psi(t) \alpha(t) y(t)\right|^{q} d \mu(t)+\int_{T \backslash T_{0}}|\psi(t) x(t)|^{q} d \mu(t) \rightarrow \max \\
& \int_{T_{0}}|x(t)-y(t)|^{p} d \mu(t) \leq \delta^{p}, \quad \int_{T}|\varphi(t) x(t)|^{r} d \mu(t) \leq 1, \tag{19}
\end{align*}
$$

where

$$
\alpha(t)= \begin{cases}q^{-1} p \lambda_{1} \widehat{x}^{p-q}(t)|\psi(t)|^{-q}, & t \in T_{0}, \psi(t) \neq 0 \tag{20}\\ 0, & \text { otherwise }\end{cases}
$$

Taking

$$
z(t)= \begin{cases}x(t)-y(t), & t \in T_{0} \\ 0, & t \in T \backslash T_{0}\end{cases}
$$

we rewrite (19) as follows:

$$
\begin{aligned}
\int_{T}|\psi(t)|^{q}|(1-\alpha(t)) x(t)+\alpha(t) z(t)|^{q} d \mu(t) & \rightarrow \max \\
\qquad \int_{T_{0}}|z(t)|^{p} d \mu(t) & \leq \delta^{p}, \quad \int_{T}|\varphi(t) x(t)|^{r} d \mu(t) \leq 1
\end{aligned}
$$

The value of this problem does not exceed the value of the problem

$$
\begin{align*}
& \int_{T}|\psi(t)|^{q}((1-\alpha(t)) u(t)+\alpha(t) v(t))^{q} d \mu(t) \rightarrow \max \\
& \qquad \begin{aligned}
& \int_{T_{0}} v^{p}(t) d \mu(t) \leq \delta^{p} \quad \int_{T}|\varphi(t)|^{r} u^{r}(t) d \mu(t) \leq 1 \\
& u(t) \geq 0, v(t) \geq 0 \quad \text { for almost all } t \in T
\end{aligned}
\end{align*}
$$

The Lagrange function for this problem is

$$
\mathcal{L}_{1}\left(u(\cdot), v(\cdot), \mu_{1}, \mu_{2}\right)=\int_{T} L_{1}\left(t, u(t), v(t), \mu_{1}, \mu_{2}\right) d \mu(t),
$$

where

$$
\begin{aligned}
L_{1}\left(t, u, v, \mu_{1}, \mu_{2}\right)=-|\psi(t)|^{q}((1-\alpha(t)) u+\alpha(t) v)^{q} & \\
& +\mu_{1} v^{p} \chi_{0}(t)+\mu_{2}|\varphi(t)|^{r} u^{r} .
\end{aligned}
$$

By Lemma 3 we have

$$
L_{1}\left(t, \widehat{x}(t), \widehat{x}(t), \lambda_{1}, \lambda_{2}\right) \leq L_{1}\left(t, u(t), v(t), \lambda_{1}, \lambda_{2}\right)
$$

Thus,

$$
\mathcal{L}_{1}\left(\widehat{x}(\cdot), \widehat{x}(\cdot), \lambda_{1}, \lambda_{2}\right) \leq \mathcal{L}_{1}\left(u(\cdot), v(\cdot), \lambda_{1}, \lambda_{2}\right) .
$$

It follows by Lemma 2 that functions $u(t)=v(t)=\widehat{x}(t)$ are extremal in (21). Consequently,

$$
e(p, q, r, \widehat{m}) \leq\left(\int_{T}|\psi(t)|^{q} \widehat{x}^{q}(t) d \mu(t)\right)^{1 / q}=\left(\frac{p \lambda_{1} \delta^{p}+r \lambda_{2}}{q}\right)^{1 / q} \leq E(p, q, r)
$$

It means that the method (4) is optimal and the optimal recovery error is as stated.

Note that if conditions of Theorem 1 hold we proved the equality

$$
\begin{equation*}
E(p, q, r)=\sup _{\substack{\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta \\\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu) \leq 1}}}\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \tag{22}
\end{equation*}
$$

Corollary 1. Let $1 \leq q<p, r<\infty, \varphi(t) \neq 0$ for almost all $t \in T$, and

$$
0<\int_{T}\left|\frac{\psi(t)}{\varphi(t)}\right|^{\frac{q r}{r-q}} d \mu(t)<\infty, \quad \int_{T_{0}}\left(\frac{|\psi(t)|^{q}}{|\varphi(t)|^{r}}\right)^{\frac{p}{r-q}} d \mu(t)<\infty .
$$

Then for all

$$
\begin{gathered}
\delta \geq \frac{\left(\int_{T_{0}}\left(\frac{|\psi(t)|^{q}}{|\varphi(t)|^{r}}\right)^{\frac{p}{r-q}} d \mu(t)\right)^{1 / p}}{\left(\int_{T}\left|\frac{\psi(t)}{\varphi(t)}\right|^{\frac{q r}{r-q}} d \mu(t)\right)^{1 / r}} \\
E(p, q, r)=\left(\int_{T}\left|\frac{\psi(t)}{\varphi(t)}\right|^{\frac{q r}{r-q}} d \mu(t)\right)^{\frac{r-q}{q r}}
\end{gathered}
$$

and the method $\widehat{m}(y)(t)=0$ is optimal recovery method.
Proof. It suffices to check that $\lambda_{1}=0$ and

$$
\lambda_{2}=\frac{q}{r}\left(\int_{T}\left|\frac{\psi(t)}{\varphi(t)}\right|^{\frac{q r}{r-q}} d \mu(t)\right)^{\frac{r-q}{r}}
$$

satisfy the conditions of Theorem 1.
Corollary 2. Let $1 \leq q<p, r<\infty, T_{0}=T$, and

$$
0<\int_{T}|\varphi(t)|^{r} \|\left.\psi(t)\right|^{\frac{q r}{p-q}} d \mu(t)<\infty, \quad \int_{T}|\psi(t)|^{\frac{q p}{p-q}} d \mu(t)<\infty .
$$

Then for all

$$
\begin{gathered}
\delta \leq \frac{\left(\int_{T}|\psi(t)|^{\frac{q p}{p-q}} d \mu(t)\right)^{1 / p}}{\left(\left.\int_{T}|\varphi(t)|^{r}| | \psi(t)\right|^{\frac{q r}{p-q}} d \mu(t)\right)^{1 / r}} \\
E(p, q, r)=\delta\left(\int_{T}|\psi(t)|^{\frac{q p}{p-q}} d \mu(t)\right)^{\frac{p-q}{q p}},
\end{gathered}
$$

and the method $\widehat{m}(y)(t)=\psi(t) y(t)$ is optimal recovery method.
Proof. It suffices to check that

$$
\lambda_{1}=\frac{q}{p \delta^{p-q}}\left(\int_{T}|\psi(t)|^{\frac{q p}{p-q}} d \mu(t)\right)^{\frac{p-q}{p}}
$$

and $\lambda_{2}=0$ satisfy the conditions of Theorem 1.
Note that assumption (3) need not be satisfied in all cases. For example, in the trivial case $\delta=0, T_{0}=T$, and $\psi(t)=1$ there are no such λ_{1} and λ_{2} which satisfy (3).

Let us consider the problem of optimal recovery of the linear functional

$$
L x=\int_{T} \psi(t) x(t) d \mu(t)
$$

on the class W, knowing $y(\cdot) \in L_{p}\left(T_{0}, \mu\right), T_{0} \subset T$, such that $\| x(\cdot)-$ $y(\cdot) \|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta, \delta \geq 0$. In this case as recovery methods we consider all possible mappings $m: L_{p}\left(T_{0}, \mu\right) \rightarrow \mathbb{C}$ or \mathbb{R}. The error of a method m is defined as

$$
e_{1}(p, r, m)=\sup _{\substack{x(\cdot) \in W,\|x(\cdot)-y(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta}}|L x-m(y)| .
$$

The quantity

$$
\begin{equation*}
E_{1}(p, r)=\inf _{m: L_{p}\left(T_{0}, \mu\right) \rightarrow \mathbb{C}(\mathbb{R})} e_{1}(q, r, m) \tag{23}
\end{equation*}
$$

is optimal recovery error, and a method on which this infimum is attained is called optimal.

Theorem 1'. Let $1<p, r<\infty, \lambda_{1}, \lambda_{2} \geq 0, \lambda_{1}+\lambda_{2}>0, \varphi(t) \neq 0$ for almost all $t \in T \backslash T_{0}, \widehat{x}(t)=\widehat{x}\left(t, \lambda_{1}, \lambda_{2}\right) \geq 0$ be a solution of equation

$$
-|\psi(t)|+p \lambda_{1} x^{p-1}(t) \chi_{0}(t)+r \lambda_{2}|\varphi(t)|^{r} x^{r-1}(t)=0
$$

and λ_{1}, λ_{2} such that conditions (3) are fulfilled, and $\lambda_{2}>0$, if $T \backslash T_{0} \neq \emptyset$. Then

$$
E_{1}(p, r)=p \lambda_{1} \delta^{p}+r \lambda_{2},
$$

and the method

$$
\begin{equation*}
\widehat{m}(y)=p \lambda_{1} \int_{T_{0}} \widehat{x}^{p-1}(t) \varepsilon(t) y(t) d \mu(t) \tag{24}
\end{equation*}
$$

where

$$
\varepsilon(t)= \begin{cases}\frac{\psi(t)}{|\psi(t)|}, & \psi(t) \neq 0 \\ 1, & \psi(t)=0\end{cases}
$$

is optimal recovery method.

Proof. For the functional case it is known (see, for example, [6]) that

$$
E_{1}(p, r)=\sup _{\substack{x(\cdot) \in W \\\|x(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta}}\left|\int_{T} \psi(t) x(t) d \mu(t)\right| .
$$

Put $\widetilde{x}(\cdot)=\overline{\varepsilon(\cdot)} \widehat{x}(\cdot)$. It follows by (3) that $\widetilde{x}(\cdot) \in W$ and $\|\widetilde{x}(\cdot)\|_{L_{p}\left(T_{0}, \mu\right)} \leq \delta$. Taking into account (18), we obtain

$$
E_{1}(p, r) \geq\left|\int_{T} \psi(t) \widetilde{x}(t) d \mu(t)\right|=\int_{T}|\psi(t)| \widehat{x}(t) d \mu(t)=p \lambda_{1} \delta^{p}+r \lambda_{2}
$$

Now we estimate the error of method (24). We have

$$
\begin{aligned}
e_{1}(p, r, \widehat{m})= & \sup _{\substack{x(\cdot) \in W, \| x(\cdot)-y(\cdot) \in(\cdot) \in L_{p}\left(T_{0}, \mu\right)}}\left|\int_{T} \psi(t) x(t) d \mu(t)-\widehat{m}(y)\right| \\
& \leq \sup _{\substack{x(\cdot) \in W, \mu(\cdot) \in \delta \\
\|z(\cdot)\|_{L_{p}\left(T_{0}, \mu\right) \leq \delta} \leq L_{p}\left(T_{0}, \mu\right)}} \int_{T}|\psi(t) \|(1-\alpha(t)) x(t)+\alpha(t) z(t)| d \mu(t),
\end{aligned}
$$

where $\alpha(\cdot)$ is defined by (20) for $q=1$. It follows from the proof of Theorem 1 that

$$
E_{1}(p, r) \leq e_{1}(p, r, \widehat{m}) \leq \int_{T}|\psi(t)| \widehat{x}(t) d \mu(t)=p \lambda_{1} \delta^{p}+r \lambda_{2}
$$

One can easily obtain analogs of Corollaries 1 and 2 for problem (23).

3. The case of homogenous weight functions

Let T be a cone in a linear space, $T_{0}=T,|\psi(\cdot)|$ and $|\varphi(\cdot)|$ be homogenous functions of degrees η, ν, respectively, $\varphi(t) \neq 0$ and $\psi(t) \neq 0$ for almost all $t \in T$, and $\mu(\cdot)$ be a homogenous measure of degree d. We assume, again, that $1 \leq p<q, r<\infty$. For $k \in[0,1)$ the function $k^{\frac{1}{p-q}}(1-k)^{-\frac{1}{r-q}}$ increases monotonically from 0 to $+\infty$. Consequently, for all $z \in T$ such that $\varphi(z) \neq 0$ and $\psi(z) \neq 0$ (if $p<r$), there exists $k(z)$ for which

$$
\begin{equation*}
\frac{k^{\frac{1}{p-q}}(z)}{(1-k(z))^{\frac{1}{r-q}}}=\frac{|\psi(z)|^{\frac{q(p-r)}{(p-q)(r-q)}}}{|\varphi(z)|^{\frac{r}{r-q}}} . \tag{25}
\end{equation*}
$$

Thus, the function $k(z)$ is well defined for almost all $z \in T$.

Theorem 2. Let $1 \leq q<p, r<\infty, \varphi(t), \psi(t) \neq 0$ for almost all $t \in T$, and $\nu+d(1 / r-1 / p) \neq 0$. Assume that

$$
\begin{aligned}
& I_{1}=\int_{T}|\psi(z)|^{\frac{q p}{p-q}} k^{\frac{p}{p^{p-q}}}(z) d \mu(z)<\infty, \\
& I_{2}=\int_{T}|\psi(z)|^{\frac{q r}{p-q}}|\varphi(z)|^{r} k^{\frac{r}{p-q}}(z) d \mu(z)<\infty .
\end{aligned}
$$

Then

$$
E(p, q, r)=\delta^{\gamma} I_{1}^{-\gamma / p} I_{2}^{-(1-\gamma) / r}\left(I_{1}+I_{2}\right)^{1 / q}
$$

where

$$
\begin{equation*}
\gamma=\frac{\nu-\eta-d(1 / q-1 / r)}{\nu+d(1 / r-1 / p)} \tag{26}
\end{equation*}
$$

and the method

$$
\widehat{m}(y)(t)=k(\xi t) \psi(t) y(t)
$$

where

$$
\begin{equation*}
\xi=\left(\delta I_{1}^{-1 / p} I_{2}^{1 / r}\right)^{\frac{1}{\nu+d(1 / r-1 / p)}} \tag{27}
\end{equation*}
$$

is optimal recovery method.
Proof. Put

$$
\widehat{x}(t)=\left(\frac{q|\psi(t)|^{q}}{p \lambda_{1}}\right)^{\frac{1}{p-q}} k^{\frac{1}{p-q}}(\xi t),
$$

where $\lambda_{1}>0$ will be specified later. We show that $\widehat{x}(\cdot)$ satisfies (2), where

$$
\begin{equation*}
\lambda_{2}=r^{-1} q^{\frac{p-r}{p-q}}\left(p \lambda_{1}\right)^{\frac{r-q}{p-q}} \xi^{\nu r-\eta \frac{q(p-r)}{p-q}} . \tag{28}
\end{equation*}
$$

We have

$$
p \lambda_{1} \widehat{x}^{p-q}(t)=q|\psi(t)|^{q} k(\xi t)
$$

and further,

$$
r \lambda_{2}|\varphi(t)|^{r} \widehat{x}^{r-q}(t)=r \lambda_{2}|\varphi(t)|^{r}\left(\frac{q|\psi(t)|^{q}}{p \lambda_{1}}\right)^{\frac{r-q}{p-q}} k^{\frac{r-q}{p-q}}(\xi t)
$$

Since $|\varphi(\cdot)|$ and $|\psi(\cdot)|$ are homogenous it follows by (25) that

$$
k^{\frac{r-q}{p-q}}(\xi t)=\frac{|\psi(\xi t)|^{\frac{q(p-r)}{p-q}}}{|\varphi(\xi t)|^{r}}(1-k(\xi t))=\xi^{\frac{q(p-r)}{p-q}-\nu r} \frac{|\psi(t)|^{\frac{q(p-r)}{p-q}}}{|\varphi(t)|^{r}}(1-k(\xi t)) .
$$

Thus,

$$
\begin{aligned}
& r \lambda_{2}|\varphi(t)|^{r} \widehat{x}^{r-q}(t)=r \lambda_{2}\left(\frac{q}{p \lambda_{1}}\right)^{\frac{r-q}{p-q}} \xi^{\eta \frac{q(p-r)}{p-q}-\nu r}|\psi(t)|^{q}(1-k(\xi t)) \\
& \quad=q|\psi(t)|^{q}(1-k(\xi t))=q|\psi(t)|^{q}-p \lambda_{1} \widehat{x}^{p-q}(t)
\end{aligned}
$$

Now we show that for

$$
\begin{equation*}
\lambda_{1}=\frac{q}{p} I_{1}^{\frac{p-q}{p}} \xi^{-\eta q-d \frac{p-q}{p}} \delta^{q-p} \tag{29}
\end{equation*}
$$

the equalities

$$
\int_{T} \widehat{x}^{p}(t) d \mu(t)=\delta^{p}, \quad \int_{T}|\varphi(t)|^{r} \widehat{x}^{r}(t) d \mu(t)=1
$$

hold. In view of the definition of $\widehat{x}(\cdot)$ we need to check that

$$
\begin{aligned}
\int_{T}\left(\frac{q|\psi(t)|^{q}}{p \lambda_{1}}\right)^{\frac{p}{p-q}} k^{\frac{p}{p-q}}(\xi t) d \mu(t) & =\delta^{p}, \\
\int_{T}|\varphi(t)|^{r}\left(\frac{q|\psi(t)|^{q}}{p \lambda_{1}}\right)^{\frac{r}{p-q}} k^{\frac{r}{p-q}}(\xi t) d \mu(t) & =1 .
\end{aligned}
$$

Changing $z=\xi t$ and taking into account that functions $|\psi(\cdot)|,|\varphi(\cdot)|$ with the measure $\mu(\cdot)$ are homogenous, we obtain

$$
\begin{aligned}
& \left(\frac{q}{p \lambda_{1}}\right)^{\frac{p}{p-q}} I_{1}=\delta^{p} \xi^{\frac{\eta q p}{p-q}+d}, \\
& \left(\frac{q}{p \lambda_{1}}\right)^{\frac{r}{p-q}} I_{2}=\xi^{\frac{\eta q r}{p-q}+\nu r+d} .
\end{aligned}
$$

The validity of these equalities immediately follows from the definitions of λ_{1} and ξ.

It follows by Theorem 1, (29), (28), and (27) that

$$
\begin{aligned}
& E^{q}(p, q, r)=\frac{p \lambda_{1} \delta^{p}+r \lambda_{2}}{q}=I_{1}^{\frac{p-q}{p}} \xi^{-\eta q-d \frac{p-q}{p}} \delta^{q}+\left(\frac{p \lambda_{1}}{q}\right)^{\frac{r-q}{p-q}} \xi^{\nu r-\eta \frac{q(p-r)}{p-q}} \\
&=\delta^{q \gamma} I_{1}^{-q \gamma / p} I_{2}^{-q(1-\gamma) / r}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

Moreover, the same theorem states that the method

$$
\widehat{m}(y)(t)=q^{-1} p \lambda_{1} \widehat{x}^{p-q}(t)|\psi(t)|^{-q} \psi(t) y(t)=k(\xi t) \psi(t) y(t)
$$

is optimal.
It follows by Theorem 2 and (22) that for all $x(\cdot) \in \mathcal{W}$ such that $\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)} \leq 1$ the exact inequality

$$
\begin{equation*}
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq C\|x(\cdot)\|_{L_{p}(T, \mu)}^{\gamma} \tag{30}
\end{equation*}
$$

holds, where

$$
C=I_{1}^{-\gamma / p} I_{2}^{-(1-\gamma) / r}\left(I_{1}+I_{2}\right)^{1 / q} .
$$

(Here and later the exactness means that C cannot be replaced by any other constant smaller than C).

From (30) the following exact inequality can be easily obtained

$$
\begin{equation*}
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq C\|x(\cdot)\|_{L_{p}(T, \mu)}^{\gamma}\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)}^{1-\gamma}, \tag{31}
\end{equation*}
$$

which holds for all $x(\cdot) \in \mathcal{W}, x(\cdot) \neq 0$.
Let $|w(\cdot)|,\left|w_{0}(\cdot)\right|$, and $\left|w_{1}(\cdot)\right|$ be homogenous functions of degrees θ, θ_{0}, and θ_{1}, respectively. We assume that $w(t), w_{0}(t), w_{1}(t) \neq 0$ for almost all $t \in T$ and $1 \leq q<p, r<\infty$. Then for almost all $z \in T$ such that $w(z), w_{0}(z), w_{1}(z) \neq 0$ there exists $\widetilde{k}(z)$ satisfying

$$
\frac{\widetilde{k}^{\frac{1}{p-q}}(z)}{(1-\widetilde{k}(z))^{\frac{1}{r-q}}}=\left|\frac{w(z)}{w_{1}(z)}\right|^{\frac{r}{r-q}}\left|\frac{w_{0}(z)}{w(z)}\right|^{\frac{p}{p-q}} .
$$

Put

$$
\begin{equation*}
\tilde{\theta}=\theta+d / q, \quad \widetilde{\theta}_{0}=\theta_{0}+d / p, \quad \widetilde{\theta}_{1}=\theta_{1}+d / r . \tag{32}
\end{equation*}
$$

Corollary 3. Let $1 \leq q<p, r<\infty, w(t), w_{0}(t), w_{1}(t) \neq 0$ for almost all $t \in T$, and $\widetilde{\theta}_{0} \neq \widetilde{\theta}_{1}$. Assume that

$$
\begin{aligned}
& \widetilde{I}_{1}=\int_{T}\left|\frac{w(z)}{w_{0}(z)}\right|^{\frac{q p}{p-q}} \widetilde{k}^{\frac{p}{p-q}}(z) d \mu(z)<\infty, \\
& \widetilde{I}_{2}=\int_{T} \frac{|w(z)|^{\frac{q r}{p-q}}}{\left|w_{0}(z)\right|^{\frac{p r}{p-q}}}\left|w_{1}(z)\right|^{r} \widetilde{k}^{\frac{r}{p-q}}(z) d \mu(z)<\infty .
\end{aligned}
$$

Then for all $x(\cdot) \neq 0$ such that $w_{0}(\cdot) x(\cdot) \in L_{p}(T, \mu)$ and $w_{1}(\cdot) x(\cdot) \in L_{r}(T, \mu)$ the exact inequality

$$
\begin{equation*}
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C}\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)}^{\widetilde{\gamma}}\left\|w_{1}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}^{1-\widetilde{\gamma}} \tag{33}
\end{equation*}
$$

holds; here

$$
\widetilde{C}=\widetilde{I}_{1}^{-} \widetilde{\gamma} / p \widetilde{I}_{2}^{-(1-\widetilde{\gamma}) / r}\left(\widetilde{I}_{1}+\widetilde{I}_{2}\right)^{1 / q}, \quad \widetilde{\gamma}=\frac{\widetilde{\theta}_{1}-\widetilde{\theta}}{\widetilde{\theta}_{1}-\widetilde{\theta}_{0}}
$$

Proof. Put

$$
\psi(x)=\frac{w(x)}{w_{0}(x)}, \quad \varphi(x)=\frac{w_{1}(x)}{w_{0}(x)} .
$$

Then $|\psi(\cdot)|$ and $|\varphi(\cdot)|$ are homogeneous functions of degrees $\eta=\theta-\theta_{0}$ and $\nu=\theta_{1}-\theta_{0}$, respectively. It follows by (31) that for all $x(\cdot) \in \mathcal{W}, x(\cdot) \neq 0$, the exact inequality

$$
\|\psi(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C}\|x(\cdot)\|_{L_{p}(T, \mu)}^{\widetilde{\gamma}}\|\varphi(\cdot) x(\cdot)\|_{L_{r}(T, \mu)}^{1-\widetilde{\gamma}}
$$

holds. Substituting $x(\cdot)=w_{0}(\cdot) y(\cdot)$, we obtain (33).

The well-known Carlson inequality [4]

$$
\begin{equation*}
\|x(t)\|_{L_{1}\left(\mathbb{R}_{+}\right)} \leq \sqrt{\pi}\|x(t)\|_{L_{2}\left(\mathbb{R}_{+}\right)}^{1 / 2}\|t x(t)\|_{L_{2}\left(\mathbb{R}_{+}\right)}^{1 / 2} \tag{34}
\end{equation*}
$$

was generalized in many directions (see [5], [1], [3]). Inequality (33) is also a generalization of the Carlson inequality.

Let $1 \leq p<q, r<\infty, T$ be a cone in $\mathbb{R}^{d}, d \mu(t)=d t,|\psi(\cdot)|$ and $|\varphi(\cdot)|$ be homogenous functions of degrees η, ν, respectively, $\varphi(t) \neq 0$ and $\psi(t) \neq 0$ for almost all $t \in T$. Thus $\mu(\cdot)$ is a homogeneous measure of degree d. Consider the polar transformation

$$
\begin{aligned}
& x_{1}=\rho \cos \omega_{1}, \\
& x_{2}=\rho \sin \omega_{1} \cos \omega_{2}, \\
& \ldots \\
& x_{d-1}=\rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \cos \omega_{d-1}, \\
& x_{d}=\rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1} .
\end{aligned}
$$

Set $\omega=\left(\omega_{1}, \ldots, \omega_{d-1}\right)$,

$$
\begin{align*}
& \widetilde{\psi}(\omega)=\rho^{-\eta}\left|\psi\left(\rho \cos \omega_{1}, \ldots, \rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right)\right|, \\
& \widetilde{\varphi}(\omega)=\rho^{-\nu}\left|\varphi\left(\rho \cos \omega_{1}, \ldots, \rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right)\right| . \tag{35}
\end{align*}
$$

Denote by Ω the range of ω. Since T is a cone, Ω does not depend on ρ. Put

$$
J(\omega)=\sin ^{d-2} \omega_{1} \sin ^{d-3} \omega_{2} \ldots \sin \omega_{d-2} .
$$

By (25) we obtain the following equality for $k(\cdot)$:

$$
\begin{equation*}
\frac{k^{\frac{1}{p-q}}(\rho, \omega)}{(1-k(\rho, \omega))^{\frac{1}{r-q}}}=\rho^{\frac{\eta q(p-r)-\nu r(p-q)}{(p-q)(r-q)}} \frac{\widetilde{\psi}^{\frac{q(p-r)}{(p-q)(r-q)}}(\omega)}{\widetilde{\varphi}^{\frac{r}{r-q}}(\omega)} . \tag{36}
\end{equation*}
$$

Assume that $\gamma \in(0,1)$, where γ is defined by (26). Put

$$
\begin{equation*}
\frac{1}{q^{*}}=\frac{1}{q}-\frac{\gamma}{p}-\frac{1-\gamma}{r} \tag{37}
\end{equation*}
$$

It is easy to verify that $q^{*}>q \geq 1$. Moreover,

$$
q^{*}=\frac{p q r(\nu+d(1 / r-1 / p))}{\nu r(p-q)-\eta q(p-r)} .
$$

Theorem 3. Let $1 \leq q<p, r<\infty, \gamma \in(0,1)$, and $\widetilde{\varphi}(\omega), \widetilde{\psi}(\omega) \neq 0$ for almost all $\omega \in \Omega$. Assume that

$$
I=\int_{\Omega} \frac{\widetilde{\psi}^{q^{*}}(\omega)}{\widetilde{\varphi}^{q^{*}(1-\gamma)}(\omega)} J(\omega) d \omega<\infty .
$$

Then

$$
E(p, q, r)=C_{1} \delta^{\gamma}
$$

where

$$
C_{1}=\gamma^{-\frac{\gamma}{p}}(1-\gamma)^{-\frac{1-\gamma}{r}}\left(\frac{B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r\right) I}{|\nu+d(1 / r-1 / p)|(\gamma r+(1-\gamma) p)}\right)^{1 / q^{*}}
$$

where $B(\cdot, \cdot)$ is the beta-function. Moreover, the method

$$
\widehat{m}(y)(t)=k\left(\xi_{1}^{\frac{1}{\nu+d(1 / r-1 / p)}} t\right) \psi(t) y(t),
$$

where

$$
\xi_{1}=\delta\left(\gamma^{q-r}(1-\gamma)^{p-q} C_{1}^{p-r}\right)^{\frac{q^{*}}{p q r}},
$$

is optimal recovery method.
Proof. Using Theorem 2, we obtain

$$
\begin{aligned}
I_{1}=\int_{T}|\psi(z)|^{\frac{q p}{p-q}} k^{\frac{p}{p-q}} & (z) d z \\
& =\int_{\Omega} \widetilde{\psi}^{\frac{q p}{p-q}}(\omega) J(\omega) d \omega \int_{0}^{+\infty} \rho^{\frac{\eta q p}{p-q}+d-1} k^{\frac{p}{p-q}}(\rho, \omega) d \rho .
\end{aligned}
$$

By (36) we have

$$
\begin{equation*}
\rho^{\nu r(p-q)-\eta q(p-r)}=\frac{(1-k(\rho, \omega))^{p-q}}{k^{r-q}(\rho, \omega)} \frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)} . \tag{38}
\end{equation*}
$$

Fixing ω, we pass to k

$$
\begin{aligned}
& d \rho^{\frac{\eta q p}{p-q}+d}=\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta} d \frac{(1-k)^{(p-q) \zeta}}{k^{(r-q) \zeta}} \\
&=-\zeta\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta} \frac{(1-k)^{(p-q) \zeta-1}}{k^{(r-q) \zeta+1}}(r-q+(p-r) k) d k,
\end{aligned}
$$

where

$$
\zeta=\frac{\eta q p+d(p-q)}{(p-q)(\nu r(p-q)-\eta q(p-r))}=\frac{q^{*}(1-\gamma)}{r(p-q)}
$$

Consequently,

$$
\begin{aligned}
& \int_{0}^{+\infty} \rho^{\frac{\eta q p}{p-q}+d-1} k^{\frac{p}{p-q}}(\rho, \omega) d \rho \\
& =\frac{p-q}{\eta q p+d(p-q)} \int_{0}^{+\infty} k^{\frac{p}{p-q}}(\rho, \omega) d \rho^{\frac{\eta q p}{p-q}+d} \\
& \quad=\frac{1}{|\nu r(p-q)-\eta q(p-r)|}\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta}\left(K_{1}+K_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{1}=(r-q) \int_{0}^{1} k^{\widehat{p}}(1-k)^{\widehat{q}-1} d k=(r-q) B(\widehat{p}+1, \widehat{q}), \\
& K_{2}=(p-r) \int_{0}^{1} k^{\widehat{p}+1}(1-k)^{\widehat{q}-1} d k=(p-r) B(\widehat{p}+2, \widehat{q}) \\
&=(p-r) \frac{\widehat{p}+1}{\widehat{p}+\widehat{q}+1} B(\widehat{p}+1, \widehat{q}), \\
& \widehat{p}= q r(\nu-\eta)-d(r-q) \\
& \nu r(p-q)-\eta q(p-r)=q^{*} \frac{\gamma}{p}, \quad \widehat{q}=\frac{\eta q p+d(p-q)}{\nu r(p-q)-\eta q(p-r)}=q^{*} \frac{1-\gamma}{r} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
K_{1}+K_{2}=p \frac{\nu r(p-q)-\eta q(p-r)}{\nu p r+d(p-r)} B(\widehat{p}+1, \widehat{q}) & =\frac{p q}{q^{*}} B(\widehat{p}+1, \widehat{q}) \\
& =\frac{q \gamma}{q^{*}}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) .
\end{aligned}
$$

The analogous calculations give

$$
\begin{aligned}
& I_{2}=\int_{T}|\psi(z)|^{\frac{q r}{p-q}}|\varphi(z)|^{r} k^{\frac{r}{p-q}}(z) d \mu(z) \\
&=\int_{\Omega} \widetilde{\psi}^{\frac{q r}{p-q}}(\omega) \widetilde{\varphi}^{r}(\omega) J(\omega) d \omega \int_{0}^{+\infty} \rho^{\frac{\eta q r}{p-q}+\nu r+d-1} k^{\frac{r}{p-q}}(\rho, \omega) d \rho .
\end{aligned}
$$

Fixing ω, we pass to k

$$
\begin{aligned}
d \rho^{\frac{\eta q r}{p-q}+\nu r+d} & =\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta_{1}} d \frac{(1-k)^{(p-q) \zeta_{1}}}{k^{(r-q) \zeta_{1}}} \\
& =-\zeta_{1}\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta_{1}} \frac{(1-k)^{(p-q) \zeta_{1}-1}}{k^{(r-q) \zeta_{1}+1}}(r-q+(p-r) k) d k,
\end{aligned}
$$

where

$$
\zeta_{1}=\frac{\eta q r+(\nu r+d)(p-q)}{(p-q)(\nu r(p-q)-\eta q(p-r))}=\frac{q^{*}(1-\gamma)}{r(p-q)}+\frac{1}{p-q} .
$$

We have

$$
\begin{aligned}
& \int_{0}^{+\infty} \rho^{\frac{\eta q r}{p-q}+\nu r+d-1} k^{\frac{r}{p-q}}(\rho, \omega) d \rho \\
& \quad=\frac{p-q}{\eta q r+(\nu r+d)(p-q)} \int_{0}^{+\infty} k^{\frac{r}{p-q}}(\rho, \omega) d \rho^{\frac{\eta q r}{p-q}+\nu r+d} \\
& \quad=\frac{1}{|\nu r(p-q)-\eta q(p-r)|}\left(\frac{\widetilde{\psi}^{q(p-r)}(\omega)}{\widetilde{\varphi}^{r(p-q)}(\omega)}\right)^{\zeta_{1}}\left(L_{1}+L_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{1}=(r-q) \int_{0}^{1} k^{\widehat{p}-1}(1-k)^{\widehat{q}} d k=(r-q) B(\widehat{p}, \widehat{q}+1) \\
& \begin{aligned}
L_{2}=(p-r) \int_{0}^{1} k^{\widehat{p}}(1-k)^{\widehat{q}} d k=(p-r) B(\widehat{p} & +1, \widehat{q}+1) \\
& =(p-r) \frac{\widehat{p}}{\widehat{p}+\widehat{q}+1} B(\widehat{p}, \widehat{q}+1) .
\end{aligned}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
L_{1}+L_{2}=r \frac{\nu r(p-q)-\eta q(p-r)}{\nu p r+d(p-r)} B(\widehat{p}, \widehat{q}+1) & =\frac{q r}{q^{*}} B(\widehat{p}, \widehat{q}+1) \\
& =\frac{q(1-\gamma)}{q^{*}}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
I_{1} & =\frac{\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I \\
I_{2} & =\frac{1-\gamma}{p r|\nu+d(1 / r-1 / p)|}\left(\frac{\gamma}{p}+\frac{1-\gamma}{r}\right)^{-1} B(\widehat{p}, \widehat{q}) I
\end{aligned}
$$

It remains to apply Theorem 2.
Note that for $d=1$ we have $I=1$ when $T=\mathbb{R}_{+}$and $I=2$ when $T=\mathbb{R}$.
Assume that $|w(\cdot)|,\left|w_{0}(\cdot)\right|$, and $\left|w_{1}(\cdot)\right|$ are homogenous functions of degrees θ, θ_{0}, and θ_{1}, respectively. Define $\widetilde{w}(\cdot), \widetilde{w}_{0}(\cdot), \widetilde{w}_{1}(\cdot)$ by the analogy with (35).

From Theorem 2 (analogously to Corollary 3) we immediately obtain
Corollary $4\left([3]^{2}\right)$. Suppose that $w(t), w_{0}(t), w_{1}(t) \neq 0$ for almost all $t \in T$, $1 \leq q<p, r<\infty, \widetilde{\gamma} \in(0,1)$, where

$$
\widetilde{\gamma}=\frac{\widetilde{\theta}_{1}-\widetilde{\theta}}{\widetilde{\theta}_{1}-\widetilde{\theta}_{0}},
$$

and $\widetilde{\theta}, \widetilde{\theta}_{0}$, and $\widetilde{\theta}_{1}$ are defined by (32). Moreover, assume that

$$
\widetilde{I}=\int_{\Omega} \frac{\widetilde{w}^{\widetilde{q}}(\omega)}{\widetilde{w}_{0}^{\widetilde{\widetilde{\gamma}}}(\omega) \widetilde{w}_{1}^{\widetilde{q}(1-\tilde{\gamma})}(\omega)} J(\omega) d \omega<\infty
$$

where

$$
\frac{1}{\widetilde{q}}=\frac{1}{q}-\frac{\widetilde{\gamma}}{p}-\frac{1-\widetilde{\gamma}}{r}
$$

[^1]Then the exact inequality

$$
\begin{equation*}
\|w(\cdot) x(\cdot)\|_{L_{q}(T, \mu)} \leq \widetilde{C}_{1}\left\|w_{0}(\cdot) x(\cdot)\right\|_{\left.L_{p}(T, \mu)\right)}^{\widetilde{\widetilde{\gamma}}}\left\|w_{1}(\cdot) x(\cdot)\right\|_{L_{r}(T, \mu)}^{1-\widetilde{\gamma}} \tag{39}
\end{equation*}
$$

holds; here

$$
\widetilde{C}_{1}=\widetilde{\gamma}^{-\frac{\widetilde{\gamma}}{p}}(1-\widetilde{\gamma})^{-\frac{1-\widetilde{\gamma}}{r}}\left(\frac{B(\widetilde{q} \widetilde{\gamma} / p, \widetilde{q}(1-\widetilde{\gamma}) / r) \widetilde{I}}{\left|\theta_{1}-\theta_{0}\right|(\widetilde{\gamma} r+(1-\widetilde{\gamma}) p)}\right)^{1 / \widetilde{q}}
$$

Put

$$
w_{0}(t)=1, \quad w_{1}(t)=t^{1-(\lambda+1) / p}, \quad w_{2}(t)=t^{1+(\mu-1) / q} .
$$

From Corollary 4 we obtain
Corollary 5 ([5]). Let $1<p, q<\infty$ and $\lambda, \mu>0$. Put

$$
\alpha=\frac{\mu}{p \mu+q \lambda}, \quad \beta=\frac{\lambda}{p \mu+q \lambda} .
$$

Then the exact inequality

$$
\|x(t)\|_{L_{1}\left(\mathbb{R}_{+}\right)} \leq C\left\|t^{1-(\lambda+1) / p} x(t)\right\|_{L_{p}\left(\mathbb{R}_{+}\right)}^{p \alpha}\left\|t^{1+(\mu-1) / q} x(t)\right\|_{L_{q}\left(\mathbb{R}_{+}\right)}^{q \beta}
$$

holds; here

$$
C=\frac{1}{(p \alpha)^{\alpha}(q \beta)^{\beta}}\left(\frac{1}{\lambda+\mu} B\left(\frac{\alpha}{1-\alpha-\beta}, \frac{\beta}{1-\alpha-\beta}\right)\right)^{1-\alpha-\beta} .
$$

Using Theorem 1^{\prime} and calculations from the proofs of Theorems 2 and 3 we obtain
Theorem $\mathbf{3}^{\prime}$. Let $1<p, r<\infty, \widetilde{\varphi}(\omega), \widetilde{\psi}(\omega) \neq 0$ for almost all $\omega \in \Omega$ and γ, $q^{*}, I, k(\cdot), C_{1}, \xi_{1}$ as above but for $q=1$. Assume that $\gamma \in(0,1)$ and $I<\infty$. Then

$$
E_{1}(p, r)=C_{1} \delta^{\gamma}
$$

Moreover, the method

$$
\widehat{m}(y)=\int_{T} k\left(\xi_{1}^{\frac{1}{\nu+d(1 / r-1 / p)}} t\right) \psi(t) y(t) d \mu(t)
$$

is optimal recovery method.

4. Optimal recovery of functions from a noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C^{∞}-functions on \mathbb{R}, S^{\prime} the corresponding space of distributions, and let $F: S^{\prime} \rightarrow S^{\prime}$ be the Fourier transform. We let \mathcal{F}_{p} denote the space of distribution $x(\cdot)$ in S^{\prime} for which

$$
\|x(\cdot)\|_{p}=\left(\int_{\mathbb{R}}|F x(t)|^{p} d t\right)^{1 / p}<\infty, \quad 1 \leq p<\infty
$$

We set

$$
\begin{aligned}
\mathcal{F}_{p}^{n} & =\left\{x(\cdot) \in S^{\prime}:\left\|x^{(n)}(\cdot)\right\|_{p}<\infty\right\} \\
F_{p}^{n} & =\left\{x(\cdot) \in \mathcal{F}_{p}^{n}:\left\|x^{(n)}(\cdot)\right\|_{p} \leq 1\right\} .
\end{aligned}
$$

Assume that the Fourier transform of a function $x(\cdot) \in F_{r}^{n} \cap \mathcal{F}_{p}$ is known on \mathbb{R} to within $\delta>0$ in the metric of $L_{p}(\mathbb{R})$. In other words, we know a function $y(\cdot) \in L_{p}(\mathbb{R})$ such that $\|F x(\cdot)-y(\cdot)\|_{L_{p}(\mathbb{R})} \leq \delta$. How should we best use this information to recover the l th derivative of the function in the metric $\mathcal{F}_{q}, 0 \leq l<n$? By recovery methods here we mean all possible mappings $m: L_{p}(\mathbb{R}) \rightarrow \mathcal{F}_{q}$. The error of a method is, by definition, the quantity

$$
e_{p, q, r}(m)=\sup _{\substack{x(\cdot) \in F_{n}^{n} \cap \mathcal{F}_{p}, y(\cdot) \in L_{p}(\mathbb{R}) \\\|F x(\cdot)-y(\cdot)\|_{L_{p}\left(\Delta_{\sigma}\right) \leq \delta}}}\left\|x^{(l)}(\cdot)-m(y)(\cdot)\right\|_{q} .
$$

The optimal recovery error is defined as follows:

$$
E_{p, q, r}=\inf _{m: L_{p}(\mathbb{R}) \rightarrow \mathcal{F}_{q}} e_{p, q, r}(m) .
$$

A method on which this lower bound is attained is called optimal.
It is readily checked that this problem is a special case of the general problem (1) with $T=T_{0}=\mathbb{R}, \psi(t)=(i t)^{l}, \varphi(t)=(i t)^{n}$.

The cases 1) $1 \leq q=r<p<\infty, 2) 1 \leq q=p<r<\infty, 3) 1 \leq q=p=r<$ ∞, and 4) $1 \leq q<p=r<\infty$ were studied in [14].

For the case $1 \leq q<p, r<\infty$ we can apply Theorem 3. In this case

$$
\frac{k^{\frac{1}{p-q}}(t)}{(1-k(t))^{\frac{1}{r-q}}}=|t|^{\frac{l q(p-r)-n r(p-q)}{(p-q)(r-q)}}, \quad \gamma=\frac{n-l-1 / q+1 / r}{n+1 / r-1 / p},
$$

and $I=2$. It is easy to verify that if $n>l+1 / q-1 / r$, then $\gamma \in(0,1)$. Thus, it follows by Theorem 3

Theorem 4. Let $1 \leq q<p, r<\infty$ and $n>l+1 / q-1 / r$. Then

$$
\begin{equation*}
E_{p, q, r}=C_{1} \delta^{\gamma} \tag{40}
\end{equation*}
$$

where

$$
C_{1}=\gamma^{-\frac{\gamma}{p}}(1-\gamma)^{-\frac{1-\gamma}{r}}\left(\frac{2 B\left(q^{*} \gamma / p, q^{*}(1-\gamma) / r\right)}{(n+1 / r-1 / p)(\gamma r+(1-\gamma) p)}\right)^{1 / q^{*}}
$$

and q^{*} is defined by (37). Moreover, the method $\widehat{m}(y)(\cdot)=F^{-1} Y_{y}(\cdot)$ is optimal, where

$$
Y_{y}(t)=(i t)^{l} k\left(\xi_{1}^{\frac{1}{n+1 / r-1 / p}} t\right) y(t), \quad \xi_{1}=\delta\left(\gamma^{q-r}(1-\gamma)^{p-q} C_{1}^{p-r}\right)^{\frac{q^{*}}{p q r}}
$$

Note that case 4) immediately follows from Theorem 4 for $p=r$. In cases 1)-3) the optimal recovery error coincides with the limits $\lim _{r \rightarrow q} E_{p, q, r}$, $\lim _{p \rightarrow q} E_{p, q, r}, \lim _{p \rightarrow q} E_{p, q, p}$, respectively, where $E_{p, q, r}$ is given by (40).

5. Optimal recovery of derivatives and generalized Carlson-LevinTaikov inequalities

For functions $x(\cdot) \in L_{2}(\mathbb{R})$ whose $(n-1)$ st derivative is locally absolutely continuous and $0 \leq k \leq n-1$, L. V. Taikov [16] obtained exact inequality

$$
\left|x^{(k)}(0)\right| \leq K\|x(\cdot)\|_{L_{2}(\mathbb{R})}^{\frac{2 n-2 k-1}{2 n}}\left\|x^{(n)}(\cdot)\right\|_{L_{2}(\mathbb{R})}^{\frac{2 k+1}{2 n}},
$$

where

$$
K=\left(\frac{2 k+1}{2 n-2 k-1}\right)^{\frac{2 n-2 k-1}{4 n}}\left((2 k+1) \sin \frac{2 k+1}{2 n} \pi\right)^{-1 / 2} .
$$

Passing to the Fourier transform we have the following equivalent inequality

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{\mathbb{R}} t^{k} F x(t) d t\right| \leq K\left(\frac{1}{2 \pi} \int_{\mathbb{R}}|F x(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}} & \\
& \times\left(\frac{1}{2 \pi} \int_{\mathbb{R}} t^{2 n}|F x(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}} .
\end{aligned}
$$

Set $g(t)=t^{k} F x(t)$. Then we obtain the following inequality

$$
\begin{aligned}
\left|\int_{\mathbb{R}} g(t) d t\right| \leq K \sqrt{2 \pi}\left(\int_{\mathbb{R}} t^{-2 k}|g(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}} & \\
& \times\left(\int_{\mathbb{R}} t^{2(n-k)}|g(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}} .
\end{aligned}
$$

Put $p=q=2, \lambda=2 k+1$, and $\mu=2 n-2 k-1$. Then by Corollary 4 we have

$$
\begin{aligned}
\int_{0}^{\infty}|g(t)| d t \leq C\left(\int_{0}^{\infty} t^{-2 k}|g(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}} & \\
& \times\left(\int_{0}^{\infty} t^{2(n-k)}|g(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}}
\end{aligned}
$$

where

$$
C=\left(\frac{2 k+1}{2 n-2 k-1}\right)^{\frac{2 n-2 k-1}{4 n}}(2 k+1)^{-1 / 2} B^{1 / 2}\left(\frac{2 n-2 k-1}{2 n}, \frac{2 k+1}{2 n}\right) .
$$

Since

$$
B\left(1-\frac{2 k+1}{2 n}, \frac{2 k+1}{2 n}\right)=\frac{\pi}{\sin \frac{2 k+1}{2 n} \pi}
$$

we have

$$
C=\sqrt{\pi}\left(\frac{2 k+1}{2 n-2 k-1}\right)^{\frac{2 n-2 k-1}{4 n}}\left((2 k+1) \sin \frac{2 k+1}{2 n} \pi\right)^{-1 / 2} .
$$

From the inequality

$$
a_{1} b_{1}+a_{2} b_{2} \leq 2^{1-s-t}\left(a_{1}^{1 / r}+a_{2}^{1 / r}\right)^{r}\left(b_{1}^{1 / s}+b_{2}^{1 / s}\right)^{s}
$$

it follows that

$$
\begin{aligned}
\int_{\mathbb{R}}|g(t)| d t & =\int_{-\infty}^{0}|g(t)| d t+\int_{0}^{\infty}|g(t)| d t \\
\leq & C\left(\int_{-\infty}^{0} t^{-2 k}|g(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}}\left(\int_{-\infty}^{0} t^{2(n-k)}|g(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}} \\
+ & C\left(\int_{0}^{\infty} t^{-2 k}|g(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}}\left(\int_{0}^{\infty} t^{2(n-k)}|g(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}} \\
& \leq \sqrt{2} C\left(\int_{\mathbb{R}} t^{-2 k}|g(t)|^{2} d t\right)^{\frac{2 n-2 k-1}{4 n}}\left(\int_{\mathbb{R}} t^{2(n-k)}|g(t)|^{2} d t\right)^{\frac{2 k+1}{4 n}}
\end{aligned}
$$

Thus Taikov's inequality follows from Levin's inequality.
This inequality is closely connected with the problem of optimal recovery of derivatives from inaccurate information about the Fourier transform (see [9]). We consider such problem in multidimensional case.

Consider linear operators $D_{1}: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$ and $D_{2}: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow$ $L_{2}\left(\mathbb{R}^{d}\right)\left(D_{1}\right.$ and D_{2} are not necessary differentiation operators). Put

$$
W=\left\{x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right):\left\|D_{2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq 1\right\} .
$$

We consider the problem of optimal recovery of $D_{1} x(\tau), \tau \in \mathbb{R}^{d}$, on the class W from the information about $x(\cdot)$, given inaccurately in $L_{2}\left(\mathbb{R}^{d}\right)$-metric.

As recovery methods we consider all possible mappings $m: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ or \mathbb{R}. The error of a method m is defined as

$$
e(m)=\sup _{\substack{x(\cdot) \in W, y(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right) \\\|x(\cdot)-y(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq \delta}}\left|D_{1} x(\tau)-m(y)\right| .
$$

The quantity

$$
\begin{equation*}
E=\inf _{m: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}(\mathbb{R})} e(m) \tag{41}
\end{equation*}
$$

is known as the optimal recovery error, and a method on which this infimum is attained is called optimal.

For the case when $d=1, D_{1} x(\cdot)=x^{(k)}(\cdot)$, and $D_{2} x(\cdot)=x^{(n)}(\cdot), 0 \leq k<n$, similar problems were considered in [9].

Let $d_{1}(t)$ and $d_{2}(\cdot)$ be measurable functions on R^{d}. Put

$$
X=\left\{x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right): d_{2}(\cdot) F x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right)\right\}
$$

We define the operator D_{2} as follows

$$
D_{2} x(\cdot)=F^{-1}\left(d_{2}(\cdot) F x(\cdot)\right)(\cdot) .
$$

Assume that $d_{1}(\cdot) F x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right)$ for all $x(\cdot) \in X$ and the operator D_{1} which is defined by the equality

$$
D_{1} x(\cdot)=F^{-1}\left(d_{1}(\cdot) F x(\cdot)\right)(\cdot)
$$

maps X to $L_{2}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$.
Let $\left|d_{1}(\cdot)\right|$ and $\left|d_{2}(\cdot)\right|$ be homogenous functions of degrees k, n, respectively (k and n are not necessarily integer), $d_{j}(t) \neq 0, j=1,2$, for almost all $t \in \mathbb{R}^{d}$. Put

$$
\begin{aligned}
& \widetilde{d}_{1}(\omega)=\rho^{-k}\left|d_{1}\left(\rho \cos \omega_{1}, \ldots, \rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right)\right|, \\
& \widetilde{d}_{2}(\omega)=\rho^{-n}\left|d_{2}\left(\rho \cos \omega_{1}, \ldots, \rho \sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right)\right| .
\end{aligned}
$$

By Plancherel's theorem we have

$$
\begin{gathered}
W=\left\{x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right): \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left|d_{2}(t) F x(t)\right|^{2} d t \leq 1\right\}, \\
\|x(\cdot)-y(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}=\frac{1}{(2 \pi)^{d / 2}}\|F x(\cdot)-F y(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)} .
\end{gathered}
$$

Moreover,

$$
D_{1} x(\tau)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} d_{1}(t) F x(t) e^{i\langle\tau, t\rangle} d t
$$

where $\langle\tau, t\rangle=\tau_{1} t_{1}+\ldots+\tau_{d} t_{d}$. Thus we obtain problem (23) with $p=r=2$, $\delta_{1}=\delta(2 \pi)^{d / 2}$,

$$
\psi(t)=\frac{1}{(2 \pi)^{d}} d_{1}(t) e^{i\langle\tau, t\rangle}, \quad \varphi(t)=\frac{1}{(2 \pi)^{d / 2}} d_{2}(t) .
$$

By Theorem 3^{\prime} we have
Theorem 5. Let $k \geq 0$ and $n>k+d / 2$. Assume that

$$
I=\int_{\Pi_{d-1}} \frac{\widetilde{d}_{1}^{2}(\omega)}{\widetilde{d}_{2}^{\frac{2 k+d}{n}}(\omega)} J(\omega) d \omega<\infty, \quad \Pi_{d-1}=[0, \pi]^{d-2} \times[0,2 \pi] .
$$

Then

$$
E=\frac{(\pi I)^{1 / 2}}{(2 \pi)^{d / 2}} K_{d}(k, n) \delta^{\frac{2 n-2 k-d}{2 n}},
$$

where

$$
K_{d}(k, n)=\left(\frac{2 k+d}{2 n-2 k-d}\right)^{\frac{2 n-2 k-d}{4 n}}\left((2 k+d) \sin \frac{2 k+d}{2 n} \pi\right)^{-1 / 2} .
$$

Moreover, the method

$$
\widehat{m}(y)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} d_{1}(t)\left(1+\frac{\delta^{2}(2 k+d)}{(2 \pi)^{d}(2 n-2 k-d)}\right)^{-1} y(t) e^{i\langle\tau, t\rangle} d t
$$

is optimal recovery method.

By this theorem analogously to (31) we obtain the exact inequality

$$
\left|D_{1} x(\tau)\right| \leq \frac{(\pi I)^{1 / 2}}{(2 \pi)^{d / 2}} K_{d}(k, n)\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 n-2 k-d}{2 n}}\left\|D_{2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 k+d}{2 n}}
$$

or

$$
\begin{equation*}
\left\|D_{1} x(\cdot)\right\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{(\pi I)^{1 / 2}}{(2 \pi)^{d / 2}} K_{d}(k, n)\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 n-2 k-d}{2 n-d}}\left\|D_{2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 k+d}{2 n}} \tag{42}
\end{equation*}
$$

Now we consider some examples. Define the operator $(-\Delta)^{n / 2}, n \geq 0$, as follows

$$
(-\Delta)^{n / 2} x(\cdot)=F^{-1}\left(|t|^{n} F x(t)\right)(\cdot)
$$

Put $d_{1}(t)=|t|^{k}$ and $d_{2}(t)=|t|^{n}$. Then problem (41) is the problem of optimal recovery of $(-\Delta)^{k / 2} x(\tau)$ on the class

$$
W=\left\{x(\cdot) \in L_{2}\left(\mathbb{R}^{d}\right):\left\|(-\Delta)^{n / 2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \leq 1\right\}
$$

by the inaccurate information about $x(\cdot)$.
By Theorem 5 we obtain
Corollary 6. Let $n>k+d / 2$. Then

$$
E=C_{d}(k, n) \delta^{\frac{2 n-2 k-d}{2 n}}, \quad C_{d}(k, n)=\frac{K_{d}(k, n)}{\left(2^{d-1} \pi^{d / 2-1} \Gamma(d / 2)\right)^{1 / 2}}
$$

and the method

$$
\widehat{m}(y)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}|t|^{k}\left(1+\frac{\delta^{2}(2 k+d)}{(2 \pi)^{d}(2 n-2 k-d)}\right)^{-1} y(t) e^{i\langle\tau, t\rangle} d t
$$

is optimal.
By (42) we get the exact inequality

$$
\left\|(-\Delta)^{k / 2} x(\cdot)\right\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq C_{d}(k, n)\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 n-2 k-d}{2 n}}\left\|(-\Delta)^{n / 2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 k+d}{2 n}}
$$

Consider one more example. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{Z}_{+}^{d}$. We define D^{α} (the derivative of order α) as follows:

$$
D^{\alpha} x(\cdot)=F^{-1}\left((i t)^{\alpha} F x(t)\right)(\cdot),
$$

where $(i t)^{\alpha}=\left(i t_{1}\right)^{\alpha_{1}} \cdots\left(i t_{d}\right)^{\alpha_{d}}$. Let $D_{1}=D^{\alpha}$ and $D_{2}=(-\Delta)^{n / 2}$. Then (41) is the problem of optimal recovery of $D^{\alpha} x(\tau)$ on the class W by the inaccurate information about $x(\cdot)$.

From the well-known Dirichlet formula we have

$$
\int_{\substack{x_{1} \geq 0, \ldots, x_{d} \geq 0 \\ x_{1}^{2}+\ldots+x_{d}^{2} \leq 1}} x_{1}^{p_{1}-1} \ldots x_{d}^{p_{d}-1} d x_{1} \ldots d x_{d}=\frac{\Gamma\left(p_{1} / 2\right) \ldots \Gamma\left(p_{d} / 2\right)}{2^{d} \Gamma\left(p_{1} / 2+\ldots+p_{d} / 2+1\right)}
$$

$p_{1}, \ldots, p_{d}>0$. Using this formula and passing to the polar transformation we obtain

$$
I\left(p_{1}, \ldots, p_{d}\right)=\int_{\Pi_{d-1}} \Phi\left(\omega, p_{1}, \ldots, p_{d}\right) J(\omega) d \omega=2 \frac{\Gamma\left(p_{1} / 2\right) \ldots \Gamma\left(p_{d} / 2\right)}{\Gamma\left(p_{1} / 2+\ldots+p_{d} / 2\right)}
$$

where

$$
\begin{aligned}
& \Phi\left(\omega, p_{1}, \ldots, p_{d}\right)=\left|\cos \omega_{1}\right|^{p_{1}-1}\left|\sin \omega_{1} \cos \omega_{2}\right|^{p_{2}-1} \times \ldots \\
& \times\left|\sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \cos \omega_{d-1}\right|^{p_{d-1}-1} \\
& \times\left|\sin \omega_{1} \sin \omega_{2} \ldots \sin \omega_{d-2} \sin \omega_{d-1}\right|^{p_{d}-1} .
\end{aligned}
$$

Thus for $d_{1}(t)=(i t)^{\alpha}$ and $d_{2}(t)=|t|^{n}$ we have

$$
I=I\left(2 \alpha_{1}+1, \ldots, 2 \alpha_{d}+1\right)=2 \frac{\Gamma\left(\alpha_{1}+1 / 2\right) \ldots \Gamma\left(\alpha_{d}+1 / 2\right)}{\Gamma(|\alpha|+d / 2)}
$$

where $|\alpha|=\alpha_{1}+\ldots \alpha_{d}$.
Corollary 7. Let $n>|\alpha|+d / 2$. Then

$$
E=C_{d, \alpha}(n) \delta^{\frac{2 n-2|\alpha|-d}{2 n}},
$$

where

$$
C_{d, \alpha}(n)=\frac{K_{d}(|\alpha|, n)}{(2 \pi)^{(d-1) / 2}}\left(\frac{\Gamma\left(\alpha_{1}+1 / 2\right) \ldots \Gamma\left(\alpha_{d}+1 / 2\right)}{\Gamma(|\alpha|+d / 2)}\right)^{1 / 2}
$$

and the method

$$
\widehat{m}(y)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}(i t)^{\alpha}\left(1+\frac{\delta^{2}(2|\alpha|+d)}{(2 \pi)^{d}(2 n-2|\alpha|-d)}\right)^{-1} y(t) e^{i\langle\tau, t\rangle} d t
$$

is optimal.
The exact inequality in this case has the form:

$$
\left\|D^{\alpha} x(\cdot)\right\|_{L_{\infty}\left(\mathbb{R}^{d}\right)} \leq C_{d, \alpha}(n)\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2 n-2|\alpha|-d}{2 n}}\left\|(-\Delta)^{n / 2} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{\frac{2|\alpha|+d}{2 n}} .
$$

References

[1] Andrianov F. I. Multidimensional analogues of Carlson's inequality and its generalizations, Izv. Vyssh. Uchebn. Zaved. Mat. 1(56) (1960) 3-7 (in Russian).
[2] Arestov V. V. Approximation of linear operators, and related extremal problems, Approximaiton of functions and operators, Proc. Steklov Inst. Math. 138 (1977) 31-44.
[3] Barza S., Burenkov V., Pečarić J., Persson L.-E. Sharp multidimentional multiplicative inequalities for weighted L_{p} spaces with homogeneous weights, Math. Ineq. Appl. 1 (1998) 53-67.
[4] Carlson F. Une inégalité, Ark. Mat. Astr. Fysik 25B (1934) 1-5.
[5] Levin V. I. Exact constants in inequalities of Carlson type, Dokl. Akad. Nauk. SSSR 59 (1948), 635-638 (in Russian).
[6] Magaril-Il'yaev G. G., Osipenko K. Yu. Optimal recovery of functionals based on inaccurate data, Math. Notes 50:6 (1991) 1274-1279.
[7] Magaril-Il'yaev G. G., Osipenko K. Yu. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error, Sbornic: Mathematics 193:3 (2002), 387-407.
[8] Magaril-Il'yaev G. G., Osipenko K. Yu. Optimal recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives, Funct. Anal. Appl. 37:3 (2003), 203-214.
[9] Magaril-Il'yaev G. G., Osipenko K. Yu. Optimal recovery of values of functions and their derivatives from inaccurate data on the Fourier transform, Sbornic: Mathematics 195:10 (2004) 1461-1476.
[10] Magaril-Il'yaev G. G., Osipenko K. Yu. How best to recover a function from its inaccurately given spectrum? Math. Notes 92:1 (2012) 51-58.
[11] Marchuk A. G., Osipenko K. Yu. Best approximation of functions specified with an error at a finite number of points, Math. Notes 17:3 (1975) 207-212.
[12] Micchelli C. A., Rivlin T. J. A survey of optimal recovery. In: Optimal Estimation in Approximation Theory (C. A. Micchelli and T. J. Rivlin, eds.). Plenum Press, New York, 1977, 1-54.
[13] Osipenko K. Yu. Optimal Recovery of Analytic Functions, Nova Science Publ., Inc., Huntington, New York 2000.
[14] Osipenko K. Yu. Optimal recovery of linear operators in non-Euclidean metrics, Sbornic: Mathematics 205:10 (2014) 1442-1472.
[15] Plaskota L. Noisy Information and Computational Complexity, Cambridge University Press, 1996.
[16] Taikov L. V. Kolmogorov-type inequalities and best formulas for numerical differentiation, Math. Notes 4:2 (1969) 631-634.
[17] Traub J. F., Wasilkowski G. W., Woźniakowski H. Information-Based Complexity, Academic Press, New York 1988.
[18] Traub J. F., Woźniakowski H. A General Theory of Optimal Algorithms, New York: Academic Press, 1980.

[^0]: Email address: kosipenko@yahoo.com (K. Yu. Osipenko)
 ${ }^{1}$ The research was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 14-01-00456, 14-01-00744)

[^1]: ${ }^{2}$ The exact constant in [3] (formula (10)) was given with a misprint.

