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Abstract

The paper is concerned with recovery problems of linear multiplier-type opera-
tors from noisy information on weighted classes of functions. Optimal methods
of recovery are constructed. The dual extremal problem is closely connected
with Carlson type inequalities.
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1. General Setting

Let T be a nonempty set, > be the o-algebra of subsets of T, and u be
a nonnegative o-additive measure on X. We denote by L,(T, X, i) (or simply
L,(T,p)) the set of all ¥-measurable functions with values in R or in C for
which

1/p
e,z = ( / Ix(t)lpdu(t)> <o, 1<p<oo,
e (2 = esssupa(t)] < 00, p = oo.
teT
Put
W= {2() € Ly(Tups) ()2l ry < 00},
W= {2() e W loO)r() o <1},

where 1 < p,r < oo, and ¢(-) is a measurable function on 7. Consider the
problem of recovery of operator A: W — Lg(T, ), 1 < g < oo, defined by
equality Az(-) = ¢¥(-)z(-), where ¥(-) is a measurable function on 7', on the

Email address: kosipenko@yahoo.com (K. Yu. Osipenko)
1The research was carried out with the financial support of the Russian Foundation for
Basic Research (grant nos. 14-01-00456, 14-01-00744)

Preprint submitted to Elsevier July 17, 2015



class W by the information about functions z(-) € W given inaccurately. More
precisely, we assume that for any function z(-) € W we know y(-) € L,(To, p),
where Tj is not empty p-measurable subset of T, such that |[z(-) =y (-)|| 2, (,u) <
4, > 0. We want to approximate the value Az(-) knowing y(-).

As recovery methods we consider all possible mappings

m: Ly(To, ) = Lg(T, ).
The error of a method m is defined as

e(p,q,r,m) = sup [Az () = m(y) ()L, (7
x()EW, y(-)€Lp(To,u)
le() =y (), (Ty,m) <6

The quantity

E(pa%r) = e(p7Q7r7 m) (1)

inf
m: Lp(To,pu)—Lq(T,p)
is known as the optimal recovery error, and a method on which this infimum is
attained is called optimal.

Various settings of optimal recovery theory and examples of such problems
may be found in [11], [12], [18], [17], [15], [13]. Much of them are devoted to
optimal recovery of linear functionals. There are not so many results about
optimal recovery of linear operators when non-Euclidean metrics is used ([12,
Theorem 12 on p. 45], [10], [14]). In [14] we considered problem (1) when
any two of p, ¢, and r coincide. Here we analyze the case when all metrics
can be different and 1 < ¢ < p,r < co. We construct optimal method of
recovery, find its error, and apply this result to obtain exact constants in Carlson
type inequalities. The case p = co and/or r = oo requires a slightly different
approach. Some particular results of such kind may be found in [7] (T = Z)
and [8] (T' =R).

2. Main results

Let xo(-) be the characteristic function of the set Tp:

1, telTy,
t) =
xo(?) {0, t ¢ To.

Theorem 1. Let 1 < g < p,r < 00, A1, 2 > 0, Ay + Xy > 0, p(t) # 0 for
almost all t € T\ To, Z(t) = Z(t, A1, A2) > 0 be a solution of equation

—qlp ()] + pAaP () x0(t) + 2| (t)["2"(t) = 0, (2)
and A1, Ao such that

/ (1) du(t) < &7, / ()7 (1) dpu(t) < 1,
To T

a(f () dult) - ) =0, xa( [ leOra@au - 1) <o



and Ay >0, if T\ Ty # 0. Then

p)\lép + 7)Ao ) 1/a
q b

E(p,q,r) = (

and the method

mly) (1) = {q-lpw-m)|¢<t>|-qw<t>y<t>, te Ty, v(t) £0.

0, otherwise,

18 optimal recovery method.
To prove this theorem we need some preliminary results.

Lemma 1.

E(p.q,r) > sup Az () Ly (1) (5)
z(-)EW
() Ly (1, 1) <6
The lower bound of type (5) is the well-known result which is usually applied
to obtain the error of optimal recovery. In more or less general forms it was
proved in many papers (see, for example, [14]).
The extremal problem which arises on the right-hand side of (5), known as
the dual problem, may be written as

[Pz, @ = max,  [lz()]lz, @ <6,

leG) (M < 1. (6)

For Ty = T C R™ and ¢ = 1 problem (6) was examined in [2] in connection with
Stechkin’s problem.

We give a straightforward result (resembling the sufficient conditions in the
Kuhn-Tucker theorem), which we will require in solving dual problems similar
to (6).

Let fj: A= R, j=0,1,...,n, be functions defined on some set A. Consider
the extremal problem

fO(x)g)maXa f](x)goa j:]-v"'anv CCGA, (7)

and write down its Lagrange function
Lz ) =—folx)+ D _Nfi@), A=A, \).
j=1

Lemma 2 ([14]). Assume that there exist /):j >0,j=1,...,n, and an element
x € A, admissible for problem (7), such that

(a) gggc(x,X)z,C(f,X), A=),
(b)Y Nfi(@ =0.
j=1

Then T is an extremal element for problem (7).



Put
F(u,v,0) = —((1 —a)u+ av)? + av? + bu", w,v >0, «a€]l0,1],
where a,b >0, and 1 < p,q,r < oco.

Lemma 3. For alla,b>0,a+b>0, and all 1 < q < p,r < o0, there exists
the unique solution uw > 0 of the equation

—q+pauP ! +rbu""1 =0. (8)
Moreover, for all u,v >0 and o = g 'paiP~1 =1 — g lrbu" ¢
F(u,u,0) < F(u,v, q). 9)
In particular, for all w >0
—u? +au? +bu" < —u? +auf +bu".

Proof. The existence of the unique solution of (8) follows from the fact that the
continuous function f(u) = pauP~? + rbu”""9 increases monotonically from 0 to
+o00.

Let us prove (9). The cases a = 0 or b = 0 are easily obtained by finding the
minimum of F(u,v,0) = —u? +bu" if a = 0 or F(u,v,1) = —v? + av? if b = 0.
Assume that a,b > 0. Then o € (0,1). Let

C > max{a_ﬁ,b_ Tiq}.
Then for v > C and v < u we have

F(u,v,a) > —u? +bu" =ul(—-1+bu""9) > 0. (10)
If v > C and v > u, then

F(u,v,a) > —v?+ av? = vI(—=14 aw?~?) > 0. (11)
Since F'(0,0, o) = 0 we obtain that

inf F(u,v,a) = inf F(u,v,a).
(u,v)ERT 0<usC
0<v<C

It follows from the Weierstrass extreme value theorem that there exist 0 < ug <
C and 0 < vg < C such that

inf  F(u,v,a) = F(ug,vg, @).
(u,v)G]Ri ( ) (0 0 )

In view of (10) and (11) up < C and vy < C. We have

Fu(u,v,0) = —q((1 — a)u + av)? (1 — a) + rbu""!
=rb(—((1 — Q)u + av) a7 4" 1).



Thus, for any vg > 0 and sufficiently small u > 0 Fy,(u,vg,) < 0. Conse-
quently,
F(’U,, 7}0,0&) < F(07U07a)

for sufficiently small u. It means that 0 < ug < C. The similar arguments show
that 0 < vg < C. Hence

F.(ug,v0, ) = Fy(ug,vg, ) = 0.
Since

Fy(u,v,a) = —q((1 — a)u + o) a 4 pav?~?
= pa(—((1 — Q)u + av)aP~9 4 pP~1)

we have
—((1 = @)ug + o) a" " +uf Tt =0, (12)
—((1 = @)ug + avg)? ™ aP~ 7 402 = 0. (13)
Consequently,
r—1
U,g_l — ar—p
Yo

Suppose that p < r. Substituting

r—p p—1

Uy = ﬂﬁvo r—1 (14)

into (13), we obtain the equality

(OéUo + (1 — a)ﬂ%vofil )q—lap—q _ v(;))—l.

This equality may be rewritten in the form

(a4 (1 —a)trT)i=t = p=a, (15)

where t = vou~!. It is easily seen that (15) has the unique solution ¢ = 1.

Consequently, vo = @ and it follows by (14) that uy = .
If p > r, then we substitute

_p—r r—1
Vg = ur-tuygr-1

into (12). Similar to the previous case we obtain the equality which may be
written in the form
rp
(s?=1 +1—a)?t =" (16)
1

where s = uot~'. The unique solution of (16) is s = 1. Thus, for the case
when p > r we have the same solution of (12), (13) ug = vop = 4. Hence, for all
u,v >0

F(u,v,a) > inf  F(u,v,a) = F(u,u,q).
(1;,11)6]1{2+



Proof of Theorem 1.
1. Lower estimate. The extremal problem (6) (for convenience, we raise the
quantity to be maximized to the g-th power) is as follows:

/ W()e(0)7 du(t) — max, [ |2 dult) < o,
To

/ o] du(t) < 1. (17)

The Lagrange function for this problem reads as

L(x() A, Ag) = / Lt 2(t), A, ) du(t),
T
where
L(t, 2, 1, Az) = —[$(B)z]® + A JzPxo(t) + Aalo(B)z]"

If ¢ € T such that ¢(t) = 0, then evidently Z(¢) = 0 and for those ¢ for all
z(-)eW
L(f,, O, /\17 )\2) < L(t, .l“(t), /\17 /\2)

Using this fact and Lemma 3, we obtain that there is the unique solution Z(-)
of (2) and, moreover, for almost all t € T" and all z(-) € W

L(ta'/r\(t)7>\17)\2) < L(tax(t)7A17>\2)'

Consequently,

L(E(), A1, A2) < L{(2(), A1, A2).-

Taking into account (3) we obtain by Lemma 2 that Z(-) is the extremal function
n (17). It follows by (5) that

E(p.qr) > ( [ oo du(t))l/q-

From (2) we have

[W()]7Z(t) = ¢ pATP (E)x7, (1) + T de|0()"T7 (2).

Integrating this equality over the set T', we obtain

A10P 4+ 1A
/|w I (8) du(e) = PR, (18)

Thus,
PALOP + mg)l/q

E(p,q,r) > ( .



2. Upper estimate. To estimate the error of method (4) we need to find the
value of the extremal problem:

. () (t) —¢(t)a(t)y(t)lqdu(t)+/T\T [Y(®)z@)|* dp(t) — max,

j2(t) — y(@)IP da(t) < 67, / o) du(t) <1, (19)
To T

where

o) = {q-lpxlfp-qu)wa)-q, tE Ty, (1) £0, )

0, otherwise.

Taking

x(t) —y(t), teTp,
0, te T\TOa

we rewrite (19) as follows:

/T (@O = a(t)z(t) + a(t)z(8)[? du(t) — max,

|=(0)[P dp(t) < o, / ()2 ()] dult) < 1.
To T

The value of this problem does not exceed the value of the problem

/T [P@®11((1 = a(®))ult) + a(t)v(t))? du(t) — max,

/ P (1) dult) < o7, / o(t)|7u" (£) du(t) < 1,
Ty T
u(t) >0, v(t) >0 for almost all teT. (21)

The Lagrange function for this problem is

£2(u(),0(), s p2) = /T Ly u(t), o(t), . ) dp(),

where
Ll(t7 U7U7M17M2) = _|,¢)(t>|q((1 - a(t))u + O[(t)’l))q
+ v xo(t) + pofe(t)|"u".
By Lemma 3 we have
Ll(t, /l‘\(t), i?\(t)7 )\1, )\2) < Ll(t7 u(t), U(t), )\1, )\2)

Thus,
Ly (/x\()? /x\()? /\1’ )‘2) <L (u()7 U(')v /\17 )‘2)



It follows by Lemma 2 that functions u(t) = v(t) = Z(t) are extremal in (21).
Consequently,

1/q 1/q
A10P + 1A
p7Q7T m </ W |qxq d:u’( )) = (plQ> < E(pv(br)'

q

It means that the method (4) is optimal and the optimal recovery error is as
stated. O

Note that if conditions of Theorem 1 hold we proved the equality
E(p.q,r) = sup [QEIO1 IATINE (22)

ey 1y, m <O
leGzOlL, (r,m <1

Corollary 1. Let 1 < g <p,r < oo, o(t) # 0 for almost allt € T, and

O™ ut) < oo, /T (‘Z%:q) T dult) < oo

(, () w0) ™
(

p(t)
X7 )™

Hpn = (/T o(t) B du(t))rqrq’

and the method m(y)(t) = 0 is optimal recovery method.

Proof. 1t suffices to check that Ay = 0 and

e z( T s du(t)yq

satisfy the conditions of Theorem 1. O

Then for all

6>

o(t)
P(t)

o(t)

Corollary 2. Let1 < g <p,r <oo,Ty=T, and

0< /T (0 716(1) 757 du(t) < oo, /T 0(6)] 725 du(t) < oo.

Then for all
qp l/p
( [ du(t)>
T

o< ir
([1wrieo ao)

p—q

Hran = 6(/} @I du(t>> -




and the method m(y)(t) = ¥ (t)y(t) is optimal recovery method.

Proof. 1t suffices to check that

p—q

n = ([ a)

and Ao = 0 satisfy the conditions of Theorem 1. O

Note that assumption (3) need not be satisfied in all cases. For example, in
the trivial case § =0, Ty = T, and ¥ (t) = 1 there are no such A\; and Ay which
satisfy (3).

Let us consider the problem of optimal recovery of the linear functional

Ly = /T (E)a(t) dp(t)

on the class W, knowing y(-) € L,(To,pn), To C T, such that |z() —
Y( )z, (rou)y < 0, 9 > 0. In this case as recovery methods we consider all
possible mappings m: L, (Tp, 1) — C or R. The error of a method m is defined
as

€1 (pa T, m) = sup |L:C - m(y)|
z(-)EW, y(-)ELp(To,p)
lz () =y, (g, m) <6

The quantity

Ey (p7 r) = 61((], Ty m) (23)

inf
m: Ly(To,n)—C(R)

is optimal recovery error, and a method on which this infimum is attained is
called optimal.

Theorem 1’. Let 1 < p,r < 00, A1, A2 >0, A\ + Ao > 0, ©(t) # 0 for almost
allt € T\ Ty, Z(t) = Z(t, A1, A2) > 0 be a solution of equation

— [0 (®)] + pAaaP " () xo(t) + rAzle(t)] 2" (t) = 0,
and A1, Ao such that conditions (3) are fulfilled, and My > 0, if T\ Ty # 0. Then
Ei(p,7) = pA\16P + 1o,

and the method

ly) = pha / TN (B(t)y(t) du(t), (24)
To
where w(t)
c(t) = ma P(t) # 0,
L ) =0,

s optimal recovery method.



Proof. For the functional case it is known (see, for example, [6]) that

Put Z(-) = e()Z(-). It follows by (3) that Z(-) € W and [|Z(-)||z, (7, < 0.
Taking into account (18), we obtain

Ei(p,r) = sup
z(-)eW
fl(- )HLP(TO ) <6

t)' :/ W ()|E(E) du(t) = pArdP + r)a.
T

Now we estimate the error of method (24). We have
el(pa T ﬁl) = sup
x()eW, y(-)€Lp(To,p)

/T B(t)(t) du(t) — Mily)
le () =yl (Tg,m) <6

< sup / [P(@)]|(1 — a(t))x(t) + at)z(t)] du(t),
et Qo T

where a(-) is defined by (20) for ¢ = 1. It follows from the proof of Theorem 1
that

Ey(p,7) < ex(pyr, ) < /T WO(0) 3 (8) dpt) = pAad® + .

One can easily obtain analogs of Corollaries 1 and 2 for problem (23).

3. The case of homogenous weight functions

Let T be a cone in a linear space, Top = T, |(-)| and |¢(-)| be homogenous
functions of degrees n, v, respectively, ¢(t) # 0 and (t) # 0 for almost all
t € T, and p(-) be a homogenous measure of degree d. We assume, again,
that 1 < p < ¢,r < 0. For k € [0,1) the function kﬁ(l - k)_r%q increases
monotonically from 0 to +oco. Consequently, for all z € T such that ¢(z) # 0
and 9(z) # 0 (if p < r), there exists k(z) for which

a(p—r)
P—q (p—aq)(r—q)
F) eI o5)

(1 — k(z)) 7 lp(z)|7

Thus, the function k(z) is well defined for almost all z € T

10



Theorem 2. Let 1 < g < p,r < 00, ¢(t),¥(t) # 0 for almost all t € T, and
v+d(1/r—1/p) #0. Assume that

L- /w |72 k72 (=) dpa(z) < oo,

b= [ WP k7 ) du(e) < .
Then
E(p’ q, ,,.) — 57[;7/17[2*(1*7)/7"(11 + 12)1/‘1’
where a1/ )
v—n-— q—1/r
= , 26
" v+d(1/r—1/p) (26)
and the method
m(y)(t) = k(€)Y (t)y(t),
where )
5 _ (5[1_1/p121/T) v+d(1/r—1/p) ’ (27)

1s optimal recovery method.

a0 = (1400 e

pA
where A; > 0 will be specified later. We show that Z(-) satisfies (2), where

Proof. Put

a(p—r)

Ao =r7lgE (pAy) T €T (28)
We have
pAEP (L) = qlY(1)]|7k(EL),

and further,

Q¢(t)|q> pa k‘%(gt)

Pl (0 = el (14

Since |¢(+)| and |¢(-)| are homogenous it follows by (25) that

q(p r)

e e
bt en = LT (- ke = ¢ S © 1 - ket)
Thus,
PAalp (O F9(t) = g (pi) e R 91— k(en)

= q[p@]1(1 = k(&) = gl ()" — pAazP(2).

11



Now we show that for
N o= L7 gt g (29)
b
the equalities
/ 2P (t) du(t) = o*, / (B2 (8) dpu(t) =
T T
hold. In view of the definition of Z(-) we need to check that
Hla\ e
(05 kst e ) = o
T\ PM

[ tetor (4250 ) K757 (6) du(t) =

Changing z = £t and taking into account that functions [¢(-)|, |¢(+)| with the
measure p(-) are homogenous, we obtain

D

q ﬁ ngqp. +d
— = §P¢Dp
(P)w) &

r

bA1L

The validity of these equalities immediately follows from the definitions of A;
and &.
It follows by Theorem 1, (29), (28), and (27) that

MO +rAy e p=g A\ P .
E(p,q,r) = me =17 f_nq_dT(Sq + <pq1> e n‘I(P q)

= 0 [Py DI 4 L),
Moreover, the same theorem states that the method
m(y)(t) = ¢ PP ()| T IP(0)y(t) = k(E)w(B)y(t)
is optimal. O

It follows by Theorem 2 and (22) that for all x(-) € W such that
le()z( )z, (r.u) <1 the exact inequality

1oz, < CllzOZ, (1,0 (30)
holds, where
C = II—’Y/PI;(l—’Y)/T(Il +I2)1/q.

12



(Here and later the exactness means that C' cannot be replaced by any other
constant smaller than C).
From (30) the following exact inequality can be easily obtained

OOz, < CleOIL, 2 IO - (31)

which holds for all z(-) e W, z(-) # 0.

Let |w(-)|, |wo()|, and |wy (-)| be homogenous functions of degrees 6, 6y, and
61, respectively. We assume that w(¢), wo(t), w1 (t) # 0 for almost all t € T and
1 < g < p,r < oo. Then for almost all z € T such that w(z),we(z),w1(z) # 0
there exists k(z) satisfying

kra(z) ‘ w(z) wo(2) |77
(1—k(z))ma  |wi(2) w(z)
Put _ _ _
9:9+d/q, 90:90+d/p, 91:01+d/7“. (32)

Corollary 3. Let 1 < g < p,r < 0o, w(t), wo(t), w1(t) # 0 for almost allt € T,
and 6y # 01. Assume that

T = w(Z) %’Vﬁ z z (o]
Il‘/Twou) R (2) dp(z) < o,
= [ O o (s dute) < oo.

T [wo(2)| 7=

Then for all x(-) # 0 such that wo(-)z(-) € Ly(T, ) and wi(-)z(-) € L. (T, )
the exact inequality

lw)aO) g < oo gl OeOI T, (39)
holds; here o
C = E—W/pfz—(l—%/r(fl + E)l/q’ 5= ~91 —f .
0, — 6y
Proof. Put
) = s xTr) = .
¥(x) wo(@) ¢(x) wo(@)

Then [¢(-)| and |p(+)| are homogeneous functions of degrees n = 6 — 6y and
v = 01 — 0Oy, respectively. It follows by (31) that for all z(-) € W, z(-) # 0, the
exact inequality

IOzl g < CleOIL @ leOeOIE T,

holds. Substituting x(-) = wo(-)y(-), we obtain (33). O

13



The well-known Carlson inequality [4]

2 (®)llzy @) < VAlE@) g, ) It @l . (34)

was generalized in many directions (see [5], [1], [3]). Inequality (33) is also a
generalization of the Carlson inequality.

Let 1 < p < gq,7 < oo, T be a cone in RY, du(t) = dt, [¢(-)] and |p(-)| be
homogenous functions of degrees 7, v, respectively, ¢(t) # 0 and ¥(t) # 0 for
almost all ¢ € T. Thus u(-) is a homogeneous measure of degree d. Consider
the polar transformation

T = pPCoSwy,
ZT9 = psSinw; cosws,

Tg—1=psinwy sinws .. .sinwgy_s cOSwq_1,
Tg=psinwi sinwsy ...sinwg_o sinwg_1.

Set w = (w1, .+.,Wd—1),
{/}v(w) =p "(pcosws,...,psinw; sinws . ..sinwy_s sinwg—1)|, (35)
p(w) =p |p(pcosws,...,psinw sinws ... sinwy—s sinwg—1)|.

Denote by € the range of w. Since T is a cone, 2 does not depend on p. Put

d—3

J(w) = gin? 2 w1 sin Wy ...Sinwg_s.

By (25) we obtain the following equality for k(-):

1 ~__q(p=r)

P— 7 —r)—vr(p— (p—a)(r—q)
_krpw) — = pgm(fp—gw—(f) 2YPEITY (W) ,,qu : (w). (36)
(1= k(p,w))™ P (w)

Assume that v € (0, 1), where v is defined by (26). Put

It is easy to verify that ¢* > ¢ > 1. Moreover,

. _ par(v+d(1/r —1/p))
vr(p—q) —nqlp —1) "

Theorem 3. Let 1 < g < p,r < 00, v € (0,1), and gZ(w),{/;(w) %0 for almost
all w € Q. Assume that

07 ()

1= Jomaow

J(w) dw < 0.

Then
E(pa q, T) = Cl(s’ya

14



where

1/q"
A e Blay/p,a" (1 =7)/r) 1
Gr=7r{1-7) <|u+d(1/7“—1/p)|(w+(1—v)p)> ’

where B(-,-) is the beta-function. Moreover, the method

Ay (1) = k (s;*d“ﬁ'”m t) B,

where

o
E =0 (T (L))
1s optimal recovery method.

Proof. Using Theorem 2, we obtain
h= [ @t ) ds

~_4ap +OO nap P
= [ @@ [ o () dp.
Q 0

y (36) we have

(38)

prrP=@)—natp—r) _ (1 — k(p,w))P—? ar—") (w)
kr=1(p,w)  @rP=9(w)
Fixing w, we pass to k
~ ¢
dpld _ PIP=7) (1) d(l — k)(p=a)¢
P orr—a)(w) L(r—a)¢
~ e
B P17 () (1 — k)p-ai-t
== ([ﬁr(pq) (w) k(r—a)¢+1 (r—q+(p—r)k)dk,
where
¢ = ngp +d(p — q) _a(1-7)
(r—qwrlp—q) —nglp—7)) r(p—q)
Consequently,
teo nap L g1, P
/0 pros kT (p,w) dp
“+o00
b—4q _r_ mnap. +d
=—— kvoa (p,w) dp?
nqp+d(p—q)/o (prw0) dp?=
~ ¢
1 ¢q(p—f’) (w)
= — Ki+ K»),
lvr(p —q) —na(p — )| (w(?—fn (w) (K + K)
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where

1 —~ ~
Ky =(r—q) / (1~ k)T dk = (r— B+ 1,9),

0
1
Ko=p-r) | 1 -k)T dk=(p—-r)Bp+2,9)
0
p+1 . ~
= —r)——B((p+1,q),
(p r)p+q+1 (P+1,9)
. mgp+dp—q)  1-7v
. q= = :
vr(p—q) —ng(p—r) r

~_qrlv—n)—dr—q) _ v
P vo—a—mp-n "1

Thus,

vrip—q) —nalp—7) o PG~ .~
K+ Ky = B(p+1,9) = —=B({p+1,
L = 1) P+ 1,9 - P+ 1,9

—1
v (v  1- PR
=*(+”) B(5.9).
q p r

The analogous calculations give

b= [ )

7 ()| k75 (2) du(z)

PTG (p,w) dp.

- [P @ @I [ " g

Fixing w, we pass to k

~ C1

ar q(p—r) _ k\p—a)¢

dpfg,quurer — % (w) d(l k) !
(p7(P—Q) (w) k(r—a)C

5= () L a1
= 1<w ( )> k) (r—q+(p—r)k)dk,

@r(p—q)(w) k(r—q¢)Ci+1

where .
ngr + (vr +d)(p — q) _Q(1—7)+ 1

Cl:(P—Q)(Vr(p—Q)—W(P—T)) rp—q) p—q

We have

+oo ngr r
/ pP*q+VT+d_1kE(p, W) dp
0

+oo
p—q / _r_ L L)
k=i (p,w) dpr=a
)»—a) Jo

- ngr+ (vr+d
B 1 Jq(p—r)(w) “
(e — @) —nalp — )] (@T“"q)(w) (L),

16



where
1 —~ —~
Ly =(r— q)/ P11 —k)?dk = (r — q)B(p, g+ 1),
0

1
Ly=(p—r) /O K1 —k)dk=(p—r)Bp+1,4+1)

P PN
=(p—1r)—= B, g+1
(p )p+q+1 (».q+1)
Thus,
Lyt Ly =y =0 1) oo gy T ey
pr vpr +d(p — 1) ’ /a
—1
gl =) (v 1=~ PR
~ 2D (1020 6
q p r
We obtain
—1
I = 7 (2+2) o
priv+d(1/r—=1/p)| \p r
I = 1= (7+1_”>_1B(ﬁa)1
prlv+d(l/r—=1/p)| \p ’
It remains to apply Theorem 2. O

Note that for d =1 we have I =1 when T'=Ry and I =2 when T'=R.
Assume that |w(-)|, |wo(+)], and |w;(+)| are homogenous functions of degrees

0, Oy, and 61, respectively. Define w(-), wo(-), w1(-) by the analogy with (35).
From Theorem 2 (analogously to Corollary 3) we immediately obtain

Corollary 4 ([3]?). Suppose that w(t),wo(t),w1(t) # 0 for almost all t € T,
1<g<p,r<oo,7e(0,1), where
i
A

and 5, 0o, and 6, are defined by (32). Moreover, assume that

I= ﬁja(w) w w o0
= /Q aﬁ(w)a?l‘ﬁ(w)ﬂ ) do < oo,

where

2The exact constant in [3] (formula (10)) was given with a misprint.
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Then the exact inequality

[w (e Lyerm < Cullwo()e O, o o (DO i (39)
holds; here
o s s B@maa -1\
Gr=7r0=9) T<|eleo|ﬁr+<1%>p>> '
Put

wo(t) =1, wy(t) =t~/ gy () = 1+ H=D/a,
From Corollary 4 we obtain
Corollary 5 ([5]). Let 1 < p,q < oo and A\,u > 0. Put

A

n
B = :
pp+ gA

o = 3
i+ gA

Then the exact inequality

|2(®)llzyray < CIE= O P[5 o 0D T2(@)]|9

holds; here

1 1 a B tmamh
O_(pa)“(qﬂ)ﬁ <A+uB<1—a—ﬁ’1—a—ﬁ>> '

Using Theorem 1’ and calculations from the proofs of Theorems 2 and 3 we
obtain

Theorem 3'. Let 1 < p,r < o0, (,Z(w),iz(w) # 0 for almost all w € Q and ~,
q*, I, k(-), C1, & as above but for ¢ = 1. Assume that v € (0,1) and I < co.
Then

El(p, r) = 01(57.

Moreover, the method

) = [ k(sl””t) SOy du(t)

18 optimal recovery method.

4. Optimal recovery of functions from a noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C*°-functions on R, S’
the corresponding space of distributions, and let F': S’ — S’ be the Fourier
transform. We let F,, denote the space of distribution z(-) in S” for which

el = ( . Fx(t)ﬁdt)l/p <00, 1<p<oo

18



We set

Fyp={z() €8 |z ()|, < 0o},
Fy ={a() e Fy : ™)l <1}

Assume that the Fourier transform of a function z(-) € F» N F, is known
on R to within § > 0 in the metric of L,(R). In other words, we know a
function y(-) € L,(R) such that ||Fz(-) — y(-)||z,®) < J. How should we best
use this information to recover the lth derivative of the function in the metric
Fq, 0 < 1 < n? By recovery methods here we mean all possible mappings
m: Ly(R) — F,. The error of a method is, by definition, the quantity

ep,q,r(m) = sup 24 () = m(y) (g
z()EF'NFp, y(-)ELp(R)
1Fz()=y( )L, (a,) <6

The optimal recovery error is defined as follows:

Epqr = . Li{lﬂ{f)_}}_q €p,q,r(m).
A method on which this lower bound is attained is called optimal.
It is readily checked that this problem is a special case of the general problem
(1) with T'= Ty = R, ¥(t) = (it)!, ¢(t) = (it)".
Thecases 1) 1<g=r<p<o00,2)1<qg=p<r<oo,3)1<g=p=r<
00, and 4) 1 < ¢ < p=r < oo were studied in [14].
For the case 1 < g < p,r < co we can apply Theorem 3. In this case

1
EP(l) gttt n—l-1/q+ U

(1— k()™ ST Y

and I = 2. It is easy to verify that if n > 1+ 1/q — 1/r, then v € (0,1). Thus,
it follows by Theorem 3

Theorem 4. Let 1 < g <p,r <oo andn>1+1/q—1/r. Then
Epqr=C167, (40)

where

(n+1/r—1/p)(yr+ (1 -~

and q* is defined by (37). Moreover, the method m(y)(-) = F~Y,(-) is optimal,
where

* * 1/q*
azvﬁu_wlg< 23@7@40%#%ﬁ>

1 &~
Y0 = 'k (77 o), & =5 (1= R
Note that case 4) immediately follows from Theorem 4 for p = In

7.
cases 1)-3) the optimal recovery error coincides with the limits lim,_,, E, 4.,
lim,_q Ep q.r, limy_q E}, 4 », respectively, where E, , .. is given by (40).
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5. Optimal recovery of derivatives and generalized Carlson-Levin-
Taikov inequalities

For functions x(-) € La(R) whose (n — 1)st derivative is locally absolutely
continuous and 0 < k <n — 1, L. V. Taikov [16] obtained exact inequality

(k) 2n73k71 (n) 5
[ (0)] < KllzOll @ 1™ Ol 2w

2k+1
n

where
—2k—1

1\ okl \ V2

Passing to the Fourier transform we have the following equivalent inequality

2n—2k—1

1 1
—/tha:(t) dt‘ gK(/ Fx(t)th>
27T R 27T R
2k+4+1

1 9 9 4an
— "E .
y <2W/Rt \Fa(b)| dt)

Set g(t) = t* Fx(t). Then we obtain the following inequality

2n—2k—1

/Rg(t) dt‘ < K@(At2k|g(t)|2dt>

2k+1
n

<[ [eropa)

Putp=qg=2 A=2k+1, and g = 2n — 2k — 1. Then by Corollary 4 we
have

2n—2k—1

[ atnae s e [T g )

2k41

oo an
x ( / t2<”'“>|g<t>|2dt> 7
0
2n—2k—1

1 an 2k —1 1

where

2n — 2k —1 2n 2n
Since 2k+1 2k+1
+ + ™
B(1l- =
< 2n 7 2n ) . 2k+1
sin T
2n
we have
2n—2k—1
2k + 1 an 2%k +1 \ V2
= e 2 1) si .
C ﬁ(2n2k1> ((k‘—i— ) sin 5 77)
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From the inequality

arby + azby < 2275l 4 @MY (BY/F + b/ )s

it follows that
0 9]
[lowiae= [ golar+ [ igteae
R —0o0 0
0 2n—2k—1 0 2]i+1
<o _emaopa) T ([ e igra)
_: 2n—2k—1 _OC;O 2§+1
+ c( / 12 g(0)]? dt) ( / 209 g 1) dt)
0 0
2n—2k—1 2k41
4n
<V2C (/ t=2F)g(t)[? dt) (/ 2=k (1)|? dt) .
R R
Thus Taikov’s inequality follows from Levin’s inequality.

This inequality is closely connected with the problem of optimal recovery of
derivatives from inaccurate information about the Fourier transform (see [9]).
We consider such problem in multidimensional case.

Consider linear operators Dy : Ly(R%) — La(RY)NC(R?) and Dy: Ly(RY) —
Ly(RY) (D; and D are not necessary differentiation operators). Put

W = {z() € La(RY) + | Do (") Lyray < 1}

We consider the problem of optimal recovery of Dyz(7), 7 € R% on the class
W from the information about z(-), given inaccurately in La(RY)-metric.

As recovery methods we consider all possible mappings m: Lo(R%) — C or
R. The error of a method m is defined as

e(m) = sup | D1z (7) —m(y)-
2()EW, y()ELa(RY)
l2() =5Vl 1 (nay <0

The quantity

E= inf 41
m: Lg(]lRI’li)—N:(R) e(m) ( )

is known as the optimal recovery error, and a method on which this infimum is
attained is called optimal.

For the case when d = 1, Dyz(-) = *)(-), and Doz(-) = 2" (-), 0 < k < n,
similar problems were considered in [9)].

Let dy(t) and da(-) be measurable functions on RY. Put

X ={z(-) € Ly(RY) : do(-)Fx(-) € Ly(RY) }.
We define the operator Dy as follows

Doz (-) = F ' (do(-)Fz (")) (-).
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Assume that di (-)Fz(-) € La(R?) for all 2(-) € X and the operator D; which is
defined by the equality

Dya(-) = F~Hdi(-)Fz()(")

maps X to Ly(R?) N C(RY).

Let |dq ()| and |d2(-)| be homogenous functions of degrees k, n, respectively
(k and n are not necessarily integer), d;(t) # 0, j = 1,2, for almost all ¢ € RY,
Put

glvl(w) = p*k|d1(pcosw1, ..., psinwi sinws ... sinwg_s sinwg—1)|,
Jg(w) = p~"|da(pcoswy,...,psinw sinws . ..sinwg_osinwg—1)|.

By Plancherel’s theorem we have
1
W =23 2() € La(RY) : —— [ |da(t)Fa(t)*dt <1
{otr e L@t s [ iaoreopar <1},

() =yl La@ey = WIIM(') = Fy()llLae)-

Moreover,
1

D = | di(t)Fa(t)e’™" dt
12(7) = gz [ DOFa()e ™ ar
where (7,t) = 71t1 + ...+ 7Tatq. Thus we obtain problem (23) with p = r = 2,
(51 = 6(27T)d/2,
VO = ST, p(0) = s da(t).
2n) ’ 22

By Theorem 3’ we have

Theorem 5. Let k >0 and n >k + d/2. Assume that

I :/ MJ(w) dw < 0o, Tlg_y =[0,7]%% x [0,27].
II

—_2k+d
d—1 d2 n (w)
Then (7‘&'[)1/2 2n—2k—d
E= W}Q(ls,n)a%
where
2n—2k—d _
Kq(k,n) = (ﬂ;{jd_d) " <(2k+d) sin 21;:; d7r> 1/2.

Moreover, the method

1 52(2k + d) RN
m(y) = W/Rd di(t) (1+ (27r)d(2n—2k—d)> y(t)e ™t at

1s optimal recovery method.
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By this theorem analogously to (31) we obtain the exact inequality

(7T'I)1/2 271,—235—(1, %
|D1$<7’)| < WKd(kvn)”x(')HLZ(]Rd) ||D237(')HL2(]R(1)
or
(71—])1/2 — 2k 2%ktd
[D12( ) Loy (rey < WKd(k,n)llx( )||L2 () S IDsa(: M 2 Ray- (42)

Now we consider some examples. Define the operator (fA)"/ 2. n >0, as

follows
(—=2)"2z(-) = FH(t]" Fa(t) ().

Put d;(t) = |t|* and da(t) = [t|*. Then problem (41) is the problem of optimal
recovery of (—A)*/2z(1) on the class

= {(-) € La(R) : |(=2)"2() || ey < 1}

by the inaccurate information about z(-).
By Theorem 5 we obtain

Corollary 6. Letn >k +d/2. Then

_ 2n—22k—d B Kd(k;,n)
E= Cd(kvn)a " Cd<k7n) - (Qd—lﬁd/2flr(d/2))1/2’

and the method

R 1 52(2k +d IR
M) = oy /R 4* (” (QW)d(én S d)) y(O)e

s optimal.

By (42) we get the exact inequality

k+d

2n—2k—d
I(=2)*22( ) ey < Calk, )z, &y 1(=2)" 2 ()IIL?‘W)

Consider one more example. Let o = (o, ..., aq) € Z%. We define D* (the
derivative of order «) as follows:

D () = F~H((it)"Fa(t))(-),

where (it)® = (it;)®* - - (itq)**. Let D; = D* and Dy = (—A)™2. Then (41)
is the problem of optimal recovery of D*z(7) on the class W by the inaccurate
information about z(-).

From the well-known Dirichlet formula we have

L(p1/2)...T(pa/2)
290 (p1 /2 + ... + pa/2 + 1)

—1 1
D .T:;d dIl N dl‘d =

1}120,‘..,1,120
m%Jr...eriSl
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P1,--.,pq > 0. Using this formula and passing to the polar transformation we
obtain

I(p1,- .- pa) = /H ®(w,pr,.--,pa)J (W) dw = QFF(;]?//;:..'.FSZ/Q;)’

where

B(w,p1,. .. pa) = | coswi [Pr 7Y sinwy coswa|P2! x ...
- - : pa_1—1
X | sinwy sinws . .. sinwg_g cos wg—1
X |sinwy sinws . .. sinwg_o sinwg_1 P47,

Thus for dy(t) = (it)® and da(t) = |[t|™ we have

Tl +1/2)...T(ag+1/2)
I'(laf +d/2) ’

I:I(2a1+17...,2ad+1):2

where |a| = a1 + ... ag.

Corollary 7. Let n > |a| +d/2. Then

2n—2|a|—d
2n

E = Cd,a (n)6 g s

where

1/2
() = Kq(|lal,n) <F(a1+1/2)...P(ad+1/2)) |

(27r)(d=1)/2 (a4 d/2)
and the method

Fily) = e 52(2]a| + d) = o

s optimal.

The exact inequality in this case has the form:

2n—2|a|—d 2|al+d

ID*2 ()| oty < Caa(mzC)l,lny I(=2)"22() L Ty
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