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Abstract

The paper is concerned with recovery problems of linear multiplier-type opera-
tors from noisy information on weighted classes of functions. Optimal methods
of recovery are constructed. The dual extremal problem is closely connected
with Carlson type inequalities.
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1. General Setting

Let T be a nonempty set, Σ be the σ-algebra of subsets of T , and µ be
a nonnegative σ-additive measure on Σ. We denote by Lp(T,Σ, µ) (or simply
Lp(T, µ)) the set of all Σ-measurable functions with values in R or in C for
which

∥x(·)∥Lp(T,µ) =

(∫
T

|x(t)|p dµ(t)
)1/p

<∞, 1 ≤ p <∞,

∥x(·)∥L∞(T,µ) = ess sup
t∈T

|x(t)| <∞, p = ∞.

Put

W = {x(·) ∈ Lp(T, µ) : ∥φ(·)x(·)∥Lr(T,µ) <∞},
W = {x(·) ∈ W : ∥φ(·)x(·)∥Lr(T,µ) ≤ 1 },

where 1 ≤ p, r ≤ ∞, and φ(·) is a measurable function on T . Consider the
problem of recovery of operator Λ: W → Lq(T, µ), 1 ≤ q ≤ ∞, defined by
equality Λx(·) = ψ(·)x(·), where ψ(·) is a measurable function on T , on the
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class W by the information about functions x(·) ∈W given inaccurately. More
precisely, we assume that for any function x(·) ∈ W we know y(·) ∈ Lp(T0, µ),
where T0 is not empty µ-measurable subset of T , such that ∥x(·)−y(·)∥Lp(T0,µ) ≤
δ, δ ≥ 0. We want to approximate the value Λx(·) knowing y(·).

As recovery methods we consider all possible mappings

m : Lp(T0, µ) → Lq(T, µ).

The error of a method m is defined as

e(p, q, r,m) = sup
x(·)∈W, y(·)∈Lp(T0,µ)
∥x(·)−y(·)∥Lp(T0,µ)≤δ

∥Λx(·)−m(y)(·)∥Lq(T,µ).

The quantity

E(p, q, r) = inf
m : Lp(T0,µ)→Lq(T,µ)

e(p, q, r,m) (1)

is known as the optimal recovery error, and a method on which this infimum is
attained is called optimal.

Various settings of optimal recovery theory and examples of such problems
may be found in [11], [12], [18], [17], [15], [13]. Much of them are devoted to
optimal recovery of linear functionals. There are not so many results about
optimal recovery of linear operators when non-Euclidean metrics is used ([12,
Theorem 12 on p. 45], [10], [14]). In [14] we considered problem (1) when
any two of p, q, and r coincide. Here we analyze the case when all metrics
can be different and 1 ≤ q < p, r < ∞. We construct optimal method of
recovery, find its error, and apply this result to obtain exact constants in Carlson
type inequalities. The case p = ∞ and/or r = ∞ requires a slightly different
approach. Some particular results of such kind may be found in [7] (T = Z)
and [8] (T = R).

2. Main results

Let χ0(·) be the characteristic function of the set T0:

χ0(t) =

{
1, t ∈ T0,

0, t /∈ T0.

Theorem 1. Let 1 ≤ q < p, r < ∞, λ1, λ2 ≥ 0, λ1 + λ2 > 0, φ(t) ̸= 0 for
almost all t ∈ T \ T0, x̂(t) = x̂(t, λ1, λ2) ≥ 0 be a solution of equation

−q|ψ(t)|q + pλ1x
p−q(t)χ0(t) + rλ2|φ(t)|rxr−q(t) = 0, (2)

and λ1, λ2 such that∫
T0

x̂p(t) dµ(t) ≤ δp,

∫
T

|φ(t)|rx̂r(t) dµ(t) ≤ 1,

λ1

(∫
T0

x̂p(t) dµ(t)− δp
)

= 0, λ2

(∫
T

|φ(t)|rx̂r(t) dµ(t)− 1

)
= 0,

(3)
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and λ2 > 0, if T \ T0 ̸= ∅. Then

E(p, q, r) =

(
pλ1δ

p + rλ2
q

)1/q

,

and the method

m̂(y)(t) =

{
q−1pλ1x̂

p−q(t)|ψ(t)|−qψ(t)y(t), t ∈ T0, ψ(t) ̸= 0,

0, otherwise,
(4)

is optimal recovery method.

To prove this theorem we need some preliminary results.

Lemma 1.
E(p, q, r) ≥ sup

x(·)∈W
∥x(·)∥Lp(T0,µ)≤δ

∥Λx(·)∥Lq(T,µ). (5)

The lower bound of type (5) is the well-known result which is usually applied
to obtain the error of optimal recovery. In more or less general forms it was
proved in many papers (see, for example, [14]).

The extremal problem which arises on the right-hand side of (5), known as
the dual problem, may be written as

∥ψ(·)x(·)∥Lq(T,µ) → max, ∥x(·)∥Lp(T0,µ) ≤ δ,

∥φ(·)x(·)∥Lr(T,µ) ≤ 1. (6)

For T0 = T ⊂ Rn and q = 1 problem (6) was examined in [2] in connection with
Stechkin’s problem.

We give a straightforward result (resembling the sufficient conditions in the
Kuhn-Tucker theorem), which we will require in solving dual problems similar
to (6).

Let fj : A→ R, j = 0, 1, . . . , n, be functions defined on some set A. Consider
the extremal problem

f0(x) → max, fj(x) ≤ 0, j = 1, . . . , n, x ∈ A, (7)

and write down its Lagrange function

L(x, λ) = −f0(x) +
n∑

j=1

λjfj(x), λ = (λ1, . . . , λn).

Lemma 2 ([14]). Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, and an element
x̂ ∈ A, admissible for problem (7), such that

(a) min
x∈A

L(x, λ̂) = L(x̂, λ̂), λ̂ = (λ̂1, . . . , λ̂n),

(b)

n∑
j=1

λ̂jfj(x̂) = 0.

Then x̂ is an extremal element for problem (7).
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Put

F (u, v, α) = −((1− α)u+ αv)q + avp + bur, u, v ≥ 0, α ∈ [0, 1],

where a, b ≥ 0, and 1 ≤ p, q, r <∞.

Lemma 3. For all a, b ≥ 0, a + b > 0, and all 1 ≤ q < p, r < ∞, there exists
the unique solution û > 0 of the equation

−q + paup−q + rbur−q = 0. (8)

Moreover, for all u, v ≥ 0 and α = q−1paûp−q = 1− q−1rbûr−q

F (û, û, α) ≤ F (u, v, α). (9)

In particular, for all u ≥ 0

−ûq + aûp + bûr ≤ −uq + aup + bur.

Proof. The existence of the unique solution of (8) follows from the fact that the
continuous function f(u) = paup−q + rbur−q increases monotonically from 0 to
+∞.

Let us prove (9). The cases a = 0 or b = 0 are easily obtained by finding the
minimum of F (u, v, 0) = −uq + bur if a = 0 or F (u, v, 1) = −vq + avp if b = 0.
Assume that a, b > 0. Then α ∈ (0, 1). Let

C > max{a−
1

p−q , b−
1

r−q }.

Then for u ≥ C and v ≤ u we have

F (u, v, α) ≥ −uq + bur = uq(−1 + bur−q) > 0. (10)

If v ≥ C and v ≥ u, then

F (u, v, α) ≥ −vq + avp = vq(−1 + avp−q) > 0. (11)

Since F (0, 0, α) = 0 we obtain that

inf
(u,v)∈R2

+

F (u, v, α) = inf
0≤u≤C
0≤v≤C

F (u, v, α).

It follows from the Weierstrass extreme value theorem that there exist 0 ≤ u0 ≤
C and 0 ≤ v0 ≤ C such that

inf
(u,v)∈R2

+

F (u, v, α) = F (u0, v0, α).

In view of (10) and (11) u0 < C and v0 < C. We have

Fu(u, v, α) = −q((1− α)u+ αv)q−1(1− α) + rbur−1

= rb(−((1− α)u+ αv)q−1ûr−q + ur−1).
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Thus, for any v0 ≥ 0 and sufficiently small u > 0 Fu(u, v0, α) < 0. Conse-
quently,

F (u, v0, α) < F (0, v0, α)

for sufficiently small u. It means that 0 < u0 < C. The similar arguments show
that 0 < v0 < C. Hence

Fu(u0, v0, α) = Fv(u0, v0, α) = 0.

Since

Fv(u, v, α) = −q((1− α)u+ αv)q−1α+ pavp−1

= pa(−((1− α)u+ αv)q−1ûp−q + vp−1)

we have

−((1− α)u0 + αv0)
q−1ûr−q + ur−1

0 = 0, (12)

−((1− α)u0 + αv0)
q−1ûp−q + vp−1

0 = 0. (13)

Consequently,
ur−1
0

vp−1
0

= ûr−p.

Suppose that p ≤ r. Substituting

u0 = û
r−p
r−1 v0

p−1
r−1 (14)

into (13), we obtain the equality

(αv0 + (1− α)û
r−p
r−1 v0

p−1
r−1 )q−1ûp−q = vp−1

0 .

This equality may be rewritten in the form

(α+ (1− α)t
p−r
r−1 )q−1 = tp−q, (15)

where t = v0û
−1. It is easily seen that (15) has the unique solution t = 1.

Consequently, v0 = û and it follows by (14) that u0 = û.
If p > r, then we substitute

v0 = û
p−r
p−1 u0

r−1
p−1

into (12). Similar to the previous case we obtain the equality which may be
written in the form

(αs
r−p
p−1 + 1− α)q−1 = sr−q, (16)

where s = u0û
−1. The unique solution of (16) is s = 1. Thus, for the case

when p > r we have the same solution of (12), (13) u0 = v0 = û. Hence, for all
u, v ≥ 0

F (u, v, α) ≥ inf
(u,v)∈R2

+

F (u, v, α) = F (û, û, α).
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Proof of Theorem 1.
1. Lower estimate. The extremal problem (6) (for convenience, we raise the

quantity to be maximized to the q-th power) is as follows:∫
T

|ψ(t)x(t)|q dµ(t) → max,

∫
T0

|x(t)|p dµ(t) ≤ δp,∫
T

|φ(t)x(t)|r dµ(t) ≤ 1. (17)

The Lagrange function for this problem reads as

L(x(·), λ1, λ2) =
∫
T

L
(
t, x(t), λ1, λ2

)
dµ(t),

where
L(t, x, λ1, λ2) = −|ψ(t)x|q + λ1|x|pχ0(t) + λ2|φ(t)x|r.

If t ∈ T such that ψ(t) = 0, then evidently x̂(t) = 0 and for those t for all
x(·) ∈ W

L(t, 0, λ1, λ2) ≤ L(t, x(t), λ1, λ2).

Using this fact and Lemma 3, we obtain that there is the unique solution x̂(·)
of (2) and, moreover, for almost all t ∈ T and all x(·) ∈ W

L(t, x̂(t), λ1, λ2) ≤ L(t, x(t), λ1, λ2).

Consequently,
L(x̂(·), λ1, λ2) ≤ L(x(·), λ1, λ2).

Taking into account (3) we obtain by Lemma 2 that x̂(·) is the extremal function
in (17). It follows by (5) that

E(p, q, r) ≥
(∫

T

|ψ(t)|qx̂q(t) dµ(t)
)1/q

.

From (2) we have

|ψ(t)|qx̂q(t) = q−1pλ1x̂
p(t)χT0(t) + q−1rλ2|φ(t)|rx̂r(t).

Integrating this equality over the set T , we obtain∫
T

|ψ(t)|qx̂q(t) dµ(t) = pλ1δ
p + rλ2
q

. (18)

Thus,

E(p, q, r) ≥
(
pλ1δ

p + rλ2
q

)1/q

.
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2. Upper estimate. To estimate the error of method (4) we need to find the
value of the extremal problem:∫

T0

|ψ(t)x(t)− ψ(t)α(t)y(t)|q dµ(t) +
∫
T\T0

|ψ(t)x(t)|q dµ(t) → max,∫
T0

|x(t)− y(t)|p dµ(t) ≤ δp,

∫
T

|φ(t)x(t)|r dµ(t) ≤ 1, (19)

where

α(t) =

{
q−1pλ1x̂

p−q(t)|ψ(t)|−q, t ∈ T0, ψ(t) ̸= 0,

0, otherwise.
(20)

Taking

z(t) =

{
x(t)− y(t), t ∈ T0,

0, t ∈ T \ T0,

we rewrite (19) as follows:∫
T

|ψ(t)|q|(1− α(t))x(t) + α(t)z(t)|q dµ(t) → max,∫
T0

|z(t)|p dµ(t) ≤ δp,

∫
T

|φ(t)x(t)|r dµ(t) ≤ 1.

The value of this problem does not exceed the value of the problem∫
T

|ψ(t)|q((1− α(t))u(t) + α(t)v(t))q dµ(t) → max,∫
T0

vp(t) dµ(t) ≤ δp,

∫
T

|φ(t)|rur(t) dµ(t) ≤ 1,

u(t) ≥ 0, v(t) ≥ 0 for almost all t ∈ T. (21)

The Lagrange function for this problem is

L1(u(·), v(·), µ1, µ2) =

∫
T

L1(t, u(t), v(t), µ1, µ2) dµ(t),

where

L1(t, u, v, µ1, µ2) = −|ψ(t)|q((1− α(t))u+ α(t)v)q

+ µ1v
pχ0(t) + µ2|φ(t)|rur.

By Lemma 3 we have

L1(t, x̂(t), x̂(t), λ1, λ2) ≤ L1(t, u(t), v(t), λ1, λ2).

Thus,
L1(x̂(·), x̂(·), λ1, λ2) ≤ L1(u(·), v(·), λ1, λ2).
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It follows by Lemma 2 that functions u(t) = v(t) = x̂(t) are extremal in (21).
Consequently,

e(p, q, r, m̂) ≤
(∫

T

|ψ(t)|qx̂q(t) dµ(t)
)1/q

=

(
pλ1δ

p + rλ2
q

)1/q

≤ E(p, q, r).

It means that the method (4) is optimal and the optimal recovery error is as
stated.

Note that if conditions of Theorem 1 hold we proved the equality

E(p, q, r) = sup
∥x(·)∥Lp(T0,µ)≤δ

∥φ(·)x(·)∥Lr(T,µ)≤1

∥ψ(·)x(·)∥Lq(T,µ). (22)

Corollary 1. Let 1 ≤ q < p, r <∞, φ(t) ̸= 0 for almost all t ∈ T , and

0 <

∫
T

∣∣∣∣ψ(t)φ(t)

∣∣∣∣
qr

r−q

dµ(t) <∞,

∫
T0

(
|ψ(t)|q

|φ(t)|r

) p
r−q

dµ(t) <∞.

Then for all

δ ≥

(∫
T0

(
|ψ(t)|q

|φ(t)|r

) p
r−q

dµ(t)

)1/p

(∫
T

∣∣∣∣ψ(t)φ(t)

∣∣∣∣
qr

r−q

dµ(t)

)1/r

E(p, q, r) =

(∫
T

∣∣∣∣ψ(t)φ(t)

∣∣∣∣
qr

r−q

dµ(t)

) r−q
qr

,

and the method m̂(y)(t) = 0 is optimal recovery method.

Proof. It suffices to check that λ1 = 0 and

λ2 =
q

r

(∫
T

∣∣∣∣ψ(t)φ(t)

∣∣∣∣
qr

r−q

dµ(t)

) r−q
r

satisfy the conditions of Theorem 1.

Corollary 2. Let 1 ≤ q < p, r <∞, T0 = T , and

0 <

∫
T

|φ(t)|r||ψ(t)|
qr

p−q dµ(t) <∞,

∫
T

|ψ(t)|
qp

p−q dµ(t) <∞.

Then for all

δ ≤

(∫
T

|ψ(t)|
qp

p−q dµ(t)

)1/p

(∫
T

|φ(t)|r||ψ(t)|
qr

p−q dµ(t)

)1/r

E(p, q, r) = δ

(∫
T

|ψ(t)|
qp

p−q dµ(t)

) p−q
qp

,
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and the method m̂(y)(t) = ψ(t)y(t) is optimal recovery method.

Proof. It suffices to check that

λ1 =
q

pδp−q

(∫
T

|ψ(t)|
qp

p−q dµ(t)

) p−q
p

and λ2 = 0 satisfy the conditions of Theorem 1.

Note that assumption (3) need not be satisfied in all cases. For example, in
the trivial case δ = 0, T0 = T , and ψ(t) = 1 there are no such λ1 and λ2 which
satisfy (3).

Let us consider the problem of optimal recovery of the linear functional

Lx =

∫
T

ψ(t)x(t) dµ(t)

on the class W , knowing y(·) ∈ Lp(T0, µ), T0 ⊂ T , such that ∥x(·) −
y(·)∥Lp(T0,µ) ≤ δ, δ ≥ 0. In this case as recovery methods we consider all
possible mappings m : Lp(T0, µ) → C or R. The error of a method m is defined
as

e1(p, r,m) = sup
x(·)∈W, y(·)∈Lp(T0,µ)
∥x(·)−y(·)∥Lp(T0,µ)≤δ

|Lx−m(y)|.

The quantity
E1(p, r) = inf

m : Lp(T0,µ)→C(R)
e1(q, r,m) (23)

is optimal recovery error, and a method on which this infimum is attained is
called optimal.

Theorem 1′. Let 1 < p, r < ∞, λ1, λ2 ≥ 0, λ1 + λ2 > 0, φ(t) ̸= 0 for almost
all t ∈ T \ T0, x̂(t) = x̂(t, λ1, λ2) ≥ 0 be a solution of equation

−|ψ(t)|+ pλ1x
p−1(t)χ0(t) + rλ2|φ(t)|rxr−1(t) = 0,

and λ1, λ2 such that conditions (3) are fulfilled, and λ2 > 0, if T \T0 ̸= ∅. Then

E1(p, r) = pλ1δ
p + rλ2,

and the method

m̂(y) = pλ1

∫
T0

x̂p−1(t)ε(t)y(t) dµ(t), (24)

where

ε(t) =


ψ(t)

|ψ(t)|
, ψ(t) ̸= 0,

1, ψ(t) = 0,

is optimal recovery method.
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Proof. For the functional case it is known (see, for example, [6]) that

E1(p, r) = sup
x(·)∈W

∥x(·)∥Lp(T0,µ)≤δ

∣∣∣∣∫
T

ψ(t)x(t) dµ(t)

∣∣∣∣.
Put x̃(·) = ε(·)x̂(·). It follows by (3) that x̃(·) ∈ W and ∥x̃(·)∥Lp(T0,µ) ≤ δ.
Taking into account (18), we obtain

E1(p, r) ≥
∣∣∣∣∫

T

ψ(t)x̃(t) dµ(t)

∣∣∣∣ = ∫
T

|ψ(t)|x̂(t) dµ(t) = pλ1δ
p + rλ2.

Now we estimate the error of method (24). We have

e1(p, r, m̂) = sup
x(·)∈W, y(·)∈Lp(T0,µ)
∥x(·)−y(·)∥Lp(T0,µ)≤δ

∣∣∣∣∫
T

ψ(t)x(t) dµ(t)− m̂(y)

∣∣∣∣
≤ sup

x(·)∈W, z(·)∈Lp(T0,µ)
∥z(·)∥Lp(T0,µ)≤δ

∫
T

|ψ(t)||(1− α(t))x(t) + α(t)z(t)| dµ(t),

where α(·) is defined by (20) for q = 1. It follows from the proof of Theorem 1
that

E1(p, r) ≤ e1(p, r, m̂) ≤
∫
T

|ψ(t)|x̂(t) dµ(t) = pλ1δ
p + rλ2.

One can easily obtain analogs of Corollaries 1 and 2 for problem (23).

3. The case of homogenous weight functions

Let T be a cone in a linear space, T0 = T , |ψ(·)| and |φ(·)| be homogenous
functions of degrees η, ν, respectively, φ(t) ̸= 0 and ψ(t) ̸= 0 for almost all
t ∈ T , and µ(·) be a homogenous measure of degree d. We assume, again,

that 1 ≤ p < q, r < ∞. For k ∈ [0, 1) the function k
1

p−q (1 − k)−
1

r−q increases
monotonically from 0 to +∞. Consequently, for all z ∈ T such that φ(z) ̸= 0
and ψ(z) ̸= 0 (if p < r), there exists k(z) for which

k
1

p−q (z)

(1− k(z))
1

r−q

=
|ψ(z)|

q(p−r)
(p−q)(r−q)

|φ(z)|
r

r−q
. (25)

Thus, the function k(z) is well defined for almost all z ∈ T .
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Theorem 2. Let 1 ≤ q < p, r < ∞, φ(t), ψ(t) ̸= 0 for almost all t ∈ T , and
ν + d(1/r − 1/p) ̸= 0. Assume that

I1 =

∫
T

|ψ(z)|
qp

p−q k
p

p−q (z) dµ(z) <∞,

I2 =

∫
T

|ψ(z)|
qr

p−q |φ(z)|rk
r

p−q (z) dµ(z) <∞.

Then
E(p, q, r) = δγI

−γ/p
1 I

−(1−γ)/r
2 (I1 + I2)

1/q,

where

γ =
ν − η − d(1/q − 1/r)

ν + d(1/r − 1/p)
, (26)

and the method
m̂(y)(t) = k(ξt)ψ(t)y(t),

where

ξ =
(
δI

−1/p
1 I

1/r
2

) 1
ν+d(1/r−1/p)

, (27)

is optimal recovery method.

Proof. Put

x̂(t) =

(
q|ψ(t)|q

pλ1

) 1
p−q

k
1

p−q (ξt),

where λ1 > 0 will be specified later. We show that x̂(·) satisfies (2), where

λ2 = r−1q
p−r
p−q (pλ1)

r−q
p−q ξνr−η

q(p−r)
p−q . (28)

We have
pλ1x̂

p−q(t) = q|ψ(t)|qk(ξt),

and further,

rλ2|φ(t)|rx̂r−q(t) = rλ2|φ(t)|r
(
q|ψ(t)|q

pλ1

) r−q
p−q

k
r−q
p−q (ξt).

Since |φ(·)| and |ψ(·)| are homogenous it follows by (25) that

k
r−q
p−q (ξt) =

|ψ(ξt)|
q(p−r)
p−q

|φ(ξt)|r
(1− k(ξt)) = ξη

q(p−r)
p−q −νr |ψ(t)|

q(p−r)
p−q

|φ(t)|r
(1− k(ξt)).

Thus,

rλ2|φ(t)|rx̂r−q(t) = rλ2

(
q

pλ1

) r−q
p−q

ξη
q(p−r)
p−q −νr|ψ(t)|q(1− k(ξt))

= q|ψ(t)|q(1− k(ξt)) = q|ψ(t)|q − pλ1x̂
p−q(t).

11



Now we show that for

λ1 =
q

p
I

p−q
p

1 ξ−ηq−d p−q
p δq−p (29)

the equalities ∫
T

x̂p(t) dµ(t) = δp,

∫
T

|φ(t)|rx̂r(t) dµ(t) = 1

hold. In view of the definition of x̂(·) we need to check that∫
T

(
q|ψ(t)|q

pλ1

) p
p−q

k
p

p−q (ξt) dµ(t) = δp,∫
T

|φ(t)|r
(
q|ψ(t)|q

pλ1

) r
p−q

k
r

p−q (ξt) dµ(t) = 1.

Changing z = ξt and taking into account that functions |ψ(·)|, |φ(·)| with the
measure µ(·) are homogenous, we obtain(

q

pλ1

) p
p−q

I1 = δpξ
ηqp
p−q+d,(

q

pλ1

) r
p−q

I2 = ξ
ηqr
p−q+νr+d.

The validity of these equalities immediately follows from the definitions of λ1
and ξ.

It follows by Theorem 1, (29), (28), and (27) that

Eq(p, q, r) =
pλ1δ

p + rλ2
q

= I
p−q
p

1 ξ−ηq−d p−q
p δq +

(
pλ1
q

) r−q
p−q

ξνr−η
q(p−r)
p−q

= δqγI
−qγ/p
1 I

−q(1−γ)/r
2 (I1 + I2).

Moreover, the same theorem states that the method

m̂(y)(t) = q−1pλ1x̂
p−q(t)|ψ(t)|−qψ(t)y(t) = k(ξt)ψ(t)y(t)

is optimal.

It follows by Theorem 2 and (22) that for all x(·) ∈ W such that
∥φ(·)x(·)∥Lr(T,µ) ≤ 1 the exact inequality

∥ψ(·)x(·)∥Lq(T,µ) ≤ C∥x(·)∥γLp(T,µ) (30)

holds, where

C = I
−γ/p
1 I

−(1−γ)/r
2 (I1 + I2)

1/q.

12



(Here and later the exactness means that C cannot be replaced by any other
constant smaller than C).

From (30) the following exact inequality can be easily obtained

∥ψ(·)x(·)∥Lq(T,µ) ≤ C∥x(·)∥γLp(T,µ)∥φ(·)x(·)∥
1−γ
Lr(T,µ), (31)

which holds for all x(·) ∈ W, x(·) ̸= 0.
Let |w(·)|, |w0(·)|, and |w1(·)| be homogenous functions of degrees θ, θ0, and

θ1, respectively. We assume that w(t), w0(t), w1(t) ̸= 0 for almost all t ∈ T and
1 ≤ q < p, r < ∞. Then for almost all z ∈ T such that w(z), w0(z), w1(z) ̸= 0

there exists k̃(z) satisfying

k̃
1

p−q (z)

(1− k̃(z))
1

r−q

=

∣∣∣∣ w(z)w1(z)

∣∣∣∣ r
r−q
∣∣∣∣w0(z)

w(z)

∣∣∣∣
p

p−q

.

Put
θ̃ = θ + d/q, θ̃0 = θ0 + d/p, θ̃1 = θ1 + d/r. (32)

Corollary 3. Let 1 ≤ q < p, r <∞, w(t), w0(t), w1(t) ̸= 0 for almost all t ∈ T ,

and θ̃0 ̸= θ̃1. Assume that

Ĩ1 =

∫
T

∣∣∣∣ w(z)w0(z)

∣∣∣∣
qp

p−q

k̃
p

p−q (z) dµ(z) <∞,

Ĩ2 =

∫
T

|w(z)|
qr

p−q

|w0(z)|
pr

p−q

|w1(z)|rk̃
r

p−q (z) dµ(z) <∞.

Then for all x(·) ̸= 0 such that w0(·)x(·) ∈ Lp(T, µ) and w1(·)x(·) ∈ Lr(T, µ)
the exact inequality

∥w(·)x(·)∥Lq(T,µ) ≤ C̃∥w0(·)x(·)∥γ̃Lp(T,µ))∥w1(·)x(·)∥1−γ̃
Lr(T,µ) (33)

holds; here

C̃ = Ĩ
−γ̃/p
1 Ĩ

−(1−γ̃)/r
2 (Ĩ1 + Ĩ2)

1/q, γ̃ =
θ̃1 − θ̃

θ̃1 − θ̃0
.

Proof. Put

ψ(x) =
w(x)

w0(x)
, φ(x) =

w1(x)

w0(x)
.

Then |ψ(·)| and |φ(·)| are homogeneous functions of degrees η = θ − θ0 and
ν = θ1 − θ0, respectively. It follows by (31) that for all x(·) ∈ W, x(·) ̸= 0, the
exact inequality

∥ψ(·)x(·)∥Lq(T,µ) ≤ C̃∥x(·)∥γ̃Lp(T,µ)∥φ(·)x(·)∥
1−γ̃
Lr(T,µ)

holds. Substituting x(·) = w0(·)y(·), we obtain (33).

13



The well-known Carlson inequality [4]

∥x(t)∥L1(R+) ≤
√
π∥x(t)∥1/2L2(R+)∥tx(t)∥

1/2
L2(R+) (34)

was generalized in many directions (see [5], [1], [3]). Inequality (33) is also a
generalization of the Carlson inequality.

Let 1 ≤ p < q, r < ∞, T be a cone in Rd, dµ(t) = dt, |ψ(·)| and |φ(·)| be
homogenous functions of degrees η, ν, respectively, φ(t) ̸= 0 and ψ(t) ̸= 0 for
almost all t ∈ T . Thus µ(·) is a homogeneous measure of degree d. Consider
the polar transformation

x1= ρ cosω1,
x2= ρ sinω1 cosω2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xd−1= ρ sinω1 sinω2 . . . sinωd−2 cosωd−1,
xd= ρ sinω1 sinω2 . . . sinωd−2 sinωd−1.

Set ω = (ω1, . . . , ωd−1),

ψ̃(ω) = ρ−η|ψ(ρ cosω1, . . . , ρ sinω1 sinω2 . . . sinωd−2 sinωd−1)|,
φ̃(ω) = ρ−ν |φ(ρ cosω1, . . . , ρ sinω1 sinω2 . . . sinωd−2 sinωd−1)|.

(35)

Denote by Ω the range of ω. Since T is a cone, Ω does not depend on ρ. Put

J(ω) = sind−2 ω1 sin
d−3 ω2 . . . sinωd−2.

By (25) we obtain the following equality for k(·):

k
1

p−q (ρ, ω)

(1− k(ρ, ω))
1

r−q

= ρ
ηq(p−r)−νr(p−q)

(p−q)(r−q)
ψ̃

q(p−r)
(p−q)(r−q) (ω)

φ̃
r

r−q (ω)
. (36)

Assume that γ ∈ (0, 1), where γ is defined by (26). Put

1

q∗
=

1

q
− γ

p
− 1− γ

r
. (37)

It is easy to verify that q∗ > q ≥ 1. Moreover,

q∗ =
pqr(ν + d(1/r − 1/p))

νr(p− q)− ηq(p− r)
.

Theorem 3. Let 1 ≤ q < p, r < ∞, γ ∈ (0, 1), and φ̃(ω), ψ̃(ω) ̸= 0 for almost
all ω ∈ Ω. Assume that

I =

∫
Ω

ψ̃q∗(ω)

φ̃q∗(1−γ)(ω)
J(ω) dω <∞.

Then
E(p, q, r) = C1δ

γ ,

14



where

C1 = γ−
γ
p (1− γ)−

1−γ
r

(
B (q∗γ/p, q∗(1− γ)/r) I

|ν + d(1/r − 1/p)|(γr + (1− γ)p)

)1/q∗

,

where B(·, ·) is the beta-function. Moreover, the method

m̂(y)(t) = k

(
ξ

1
ν+d(1/r−1/p)

1 t

)
ψ(t)y(t),

where

ξ1 = δ
(
γq−r(1− γ)p−qCp−r

1

) q∗
pqr ,

is optimal recovery method.

Proof. Using Theorem 2, we obtain

I1 =

∫
T

|ψ(z)|
qp

p−q k
p

p−q (z) dz

=

∫
Ω

ψ̃
qp

p−q (ω)J(ω) dω

∫ +∞

0

ρ
ηqp
p−q+d−1k

p
p−q (ρ, ω) dρ.

By (36) we have

ρνr(p−q)−ηq(p−r) =
(1− k(ρ, ω))p−q

kr−q(ρ, ω)

ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)
. (38)

Fixing ω, we pass to k

dρ
ηqp
p−q+d =

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ

d
(1− k)(p−q)ζ

k(r−q)ζ

= −ζ

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ
(1− k)(p−q)ζ−1

k(r−q)ζ+1
(r − q + (p− r)k) dk,

where

ζ =
ηqp+ d(p− q)

(p− q)(νr(p− q)− ηq(p− r))
=
q∗(1− γ)

r(p− q)
.

Consequently,∫ +∞

0

ρ
ηqp
p−q+d−1k

p
p−q (ρ, ω) dρ

=
p− q

ηqp+ d(p− q)

∫ +∞

0

k
p

p−q (ρ, ω) dρ
ηqp
p−q+d

=
1

|νr(p− q)− ηq(p− r)|

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ

(K1 +K2),
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where

K1 = (r − q)

∫ 1

0

kp̂(1− k)q̂−1 dk = (r − q)B(p̂+ 1, q̂),

K2 = (p− r)

∫ 1

0

kp̂+1(1− k)q̂−1 dk = (p− r)B(p̂+ 2, q̂)

= (p− r)
p̂+ 1

p̂+ q̂ + 1
B(p̂+ 1, q̂),

p̂ =
qr(ν − η)− d(r − q)

νr(p− q)− ηq(p− r)
= q∗

γ

p
, q̂ =

ηqp+ d(p− q)

νr(p− q)− ηq(p− r)
= q∗

1− γ

r
.

Thus,

K1 +K2 = p
νr(p− q)− ηq(p− r)

νpr + d(p− r)
B(p̂+ 1, q̂) =

pq

q∗
B(p̂+ 1, q̂)

=
qγ

q∗

(
γ

p
+

1− γ

r

)−1

B(p̂, q̂).

The analogous calculations give

I2 =

∫
T

|ψ(z)|
qr

p−q |φ(z)|rk
r

p−q (z) dµ(z)

=

∫
Ω

ψ̃
qr

p−q (ω)φ̃r(ω)J(ω) dω

∫ +∞

0

ρ
ηqr
p−q+νr+d−1k

r
p−q (ρ, ω) dρ.

Fixing ω, we pass to k

dρ
ηqr
p−q+νr+d =

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ1

d
(1− k)(p−q)ζ1

k(r−q)ζ1

= −ζ1

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ1
(1− k)(p−q)ζ1−1

k(r−q)ζ1+1
(r − q + (p− r)k) dk,

where

ζ1 =
ηqr + (νr + d)(p− q)

(p− q)(νr(p− q)− ηq(p− r))
=
q∗(1− γ)

r(p− q)
+

1

p− q
.

We have∫ +∞

0

ρ
ηqr
p−q+νr+d−1k

r
p−q (ρ, ω) dρ

=
p− q

ηqr + (νr + d)(p− q)

∫ +∞

0

k
r

p−q (ρ, ω) dρ
ηqr
p−q+νr+d

=
1

|νr(p− q)− ηq(p− r)|

(
ψ̃q(p−r)(ω)

φ̃r(p−q)(ω)

)ζ1

(L1 + L2),
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where

L1 = (r − q)

∫ 1

0

kp̂−1(1− k)q̂ dk = (r − q)B(p̂, q̂ + 1),

L2 = (p− r)

∫ 1

0

kp̂(1− k)q̂ dk = (p− r)B(p̂+ 1, q̂ + 1)

= (p− r)
p̂

p̂+ q̂ + 1
B(p̂, q̂ + 1).

Thus,

L1 + L2 = r
νr(p− q)− ηq(p− r)

νpr + d(p− r)
B(p̂, q̂ + 1) =

qr

q∗
B(p̂, q̂ + 1)

=
q(1− γ)

q∗

(
γ

p
+

1− γ

r

)−1

B(p̂, q̂).

We obtain

I1 =
γ

pr|ν + d(1/r − 1/p)|

(
γ

p
+

1− γ

r

)−1

B(p̂, q̂)I,

I2 =
1− γ

pr|ν + d(1/r − 1/p)|

(
γ

p
+

1− γ

r

)−1

B(p̂, q̂)I.

It remains to apply Theorem 2.

Note that for d = 1 we have I = 1 when T = R+ and I = 2 when T = R.
Assume that |w(·)|, |w0(·)|, and |w1(·)| are homogenous functions of degrees

θ, θ0, and θ1, respectively. Define w̃(·), w̃0(·), w̃1(·) by the analogy with (35).
From Theorem 2 (analogously to Corollary 3) we immediately obtain

Corollary 4 ([3]2). Suppose that w(t), w0(t), w1(t) ̸= 0 for almost all t ∈ T ,
1 ≤ q < p, r <∞, γ̃ ∈ (0, 1), where

γ̃ =
θ̃1 − θ̃

θ̃1 − θ̃0
,

and θ̃, θ̃0, and θ̃1 are defined by (32). Moreover, assume that

Ĩ =

∫
Ω

w̃q̃(ω)

w̃q̃γ̃
0 (ω)w̃

q̃(1−γ̃)
1 (ω)

J(ω) dω <∞,

where
1

q̃
=

1

q
− γ̃

p
− 1− γ̃

r
.

2The exact constant in [3] (formula (10)) was given with a misprint.
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Then the exact inequality

∥w(·)x(·)∥Lq(T,µ) ≤ C̃1∥w0(·)x(·)∥γ̃Lp(T,µ))∥w1(·)x(·)∥1−γ̃
Lr(T,µ) (39)

holds; here

C̃1 = γ̃−
γ̃
p (1− γ̃)−

1−γ̃
r

(
B (q̃γ̃/p, q̃(1− γ̃)/r) Ĩ

|θ1 − θ0|(γ̃r + (1− γ̃)p)

)1/q̃

.

Put
w0(t) = 1, w1(t) = t1−(λ+1)/p, w2(t) = t1+(µ−1)/q.

From Corollary 4 we obtain

Corollary 5 ([5]). Let 1 < p, q <∞ and λ, µ > 0. Put

α =
µ

pµ+ qλ
, β =

λ

pµ+ qλ
.

Then the exact inequality

∥x(t)∥L1(R+) ≤ C∥t1−(λ+1)/px(t)∥pαLp(R+)∥t
1+(µ−1)/qx(t)∥qβLq(R+)

holds; here

C =
1

(pα)α(qβ)β

(
1

λ+ µ
B

(
α

1− α− β
,

β

1− α− β

))1−α−β

.

Using Theorem 1′ and calculations from the proofs of Theorems 2 and 3 we
obtain

Theorem 3′. Let 1 < p, r < ∞, φ̃(ω), ψ̃(ω) ̸= 0 for almost all ω ∈ Ω and γ,
q∗, I, k(·), C1, ξ1 as above but for q = 1. Assume that γ ∈ (0, 1) and I < ∞.
Then

E1(p, r) = C1δ
γ .

Moreover, the method

m̂(y) =

∫
T

k

(
ξ

1
ν+d(1/r−1/p)

1 t

)
ψ(t)y(t) dµ(t)

is optimal recovery method.

4. Optimal recovery of functions from a noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C∞-functions on R, S′

the corresponding space of distributions, and let F : S′ → S′ be the Fourier
transform. We let Fp denote the space of distribution x(·) in S′ for which

∥x(·)∥p =

(∫
R
|Fx(t)|p dt

)1/p

<∞, 1 ≤ p <∞.
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We set

Fn
p = {x(·) ∈ S′ : ∥x(n)(·)∥p <∞},

Fn
p = {x(·) ∈ Fn

p : ∥x(n)(·)∥p ≤ 1 }.

Assume that the Fourier transform of a function x(·) ∈ Fn
r ∩ Fp is known

on R to within δ > 0 in the metric of Lp(R). In other words, we know a
function y(·) ∈ Lp(R) such that ∥Fx(·) − y(·)∥Lp(R) ≤ δ. How should we best
use this information to recover the lth derivative of the function in the metric
Fq, 0 ≤ l < n? By recovery methods here we mean all possible mappings
m : Lp(R) → Fq. The error of a method is, by definition, the quantity

ep,q,r(m) = sup
x(·)∈Fn

r ∩Fp, y(·)∈Lp(R)
∥Fx(·)−y(·)∥Lp(∆σ)≤δ

∥x(l)(·)−m(y)(·)∥q.

The optimal recovery error is defined as follows:

Ep,q,r = inf
m : Lp(R)→Fq

ep,q,r(m).

A method on which this lower bound is attained is called optimal.
It is readily checked that this problem is a special case of the general problem

(1) with T = T0 = R, ψ(t) = (it)l, φ(t) = (it)n.
The cases 1) 1 ≤ q = r < p <∞, 2) 1 ≤ q = p < r <∞, 3) 1 ≤ q = p = r <

∞, and 4) 1 ≤ q < p = r <∞ were studied in [14].
For the case 1 ≤ q < p, r <∞ we can apply Theorem 3. In this case

k
1

p−q (t)

(1− k(t))
1

r−q

= |t|
lq(p−r)−nr(p−q)

(p−q)(r−q) , γ =
n− l − 1/q + 1/r

n+ 1/r − 1/p
,

and I = 2. It is easy to verify that if n > l + 1/q − 1/r, then γ ∈ (0, 1). Thus,
it follows by Theorem 3

Theorem 4. Let 1 ≤ q < p, r <∞ and n > l + 1/q − 1/r. Then

Ep,q,r = C1δ
γ , (40)

where

C1 = γ−
γ
p (1− γ)−

1−γ
r

(
2B (q∗γ/p, q∗(1− γ)/r)

(n+ 1/r − 1/p)(γr + (1− γ)p)

)1/q∗

and q∗ is defined by (37). Moreover, the method m̂(y)(·) = F−1Yy(·) is optimal,
where

Yy(t) = (it)lk

(
ξ

1
n+1/r−1/p

1 t

)
y(t), ξ1 = δ

(
γq−r(1− γ)p−qCp−r

1

) q∗
pqr .

Note that case 4) immediately follows from Theorem 4 for p = r. In
cases 1)–3) the optimal recovery error coincides with the limits limr→q Ep,q,r,
limp→q Ep,q,r, limp→q Ep,q,p, respectively, where Ep,q,r is given by (40).
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5. Optimal recovery of derivatives and generalized Carlson-Levin-
Taikov inequalities

For functions x(·) ∈ L2(R) whose (n − 1)st derivative is locally absolutely
continuous and 0 ≤ k ≤ n− 1, L. V. Taikov [16] obtained exact inequality

|x(k)(0)| ≤ K∥x(·)∥
2n−2k−1

2n

L2(R) ∥x(n)(·)∥
2k+1
2n

L2(R),

where

K =

(
2k + 1

2n− 2k − 1

) 2n−2k−1
4n

(
(2k + 1) sin

2k + 1

2n
π

)−1/2

.

Passing to the Fourier transform we have the following equivalent inequality∣∣∣∣ 12π
∫
R
tkFx(t) dt

∣∣∣∣ ≤ K

(
1

2π

∫
R
|Fx(t)|2 dt

) 2n−2k−1
4n

×
(

1

2π

∫
R
t2n|Fx(t)|2 dt

) 2k+1
4n

.

Set g(t) = tkFx(t). Then we obtain the following inequality∣∣∣∣∫
R
g(t) dt

∣∣∣∣ ≤ K
√
2π

(∫
R
t−2k|g(t)|2 dt

) 2n−2k−1
4n

×
(∫

R
t2(n−k)|g(t)|2 dt

) 2k+1
4n

.

Put p = q = 2, λ = 2k + 1, and µ = 2n − 2k − 1. Then by Corollary 4 we
have∫ ∞

0

|g(t)| dt ≤ C

(∫ ∞

0

t−2k|g(t)|2 dt
) 2n−2k−1

4n

×
(∫ ∞

0

t2(n−k)|g(t)|2 dt
) 2k+1

4n

,

where

C =

(
2k + 1

2n− 2k − 1

) 2n−2k−1
4n

(2k + 1)−1/2B1/2

(
2n− 2k − 1

2n
,
2k + 1

2n

)
.

Since

B

(
1− 2k + 1

2n
,
2k + 1

2n

)
=

π

sin
2k + 1

2n
π

we have

C =
√
π

(
2k + 1

2n− 2k − 1

) 2n−2k−1
4n

(
(2k + 1) sin

2k + 1

2n
π

)−1/2

.
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From the inequality

a1b1 + a2b2 ≤ 21−s−t(a
1/r
1 + a

1/r
2 )r(b

1/s
1 + b

1/s
2 )s

it follows that∫
R
|g(t)| dt =

∫ 0

−∞
|g(t)| dt+

∫ ∞

0

|g(t)| dt

≤ C

(∫ 0

−∞
t−2k|g(t)|2 dt

) 2n−2k−1
4n

(∫ 0

−∞
t2(n−k)|g(t)|2 dt

) 2k+1
4n

+ C

(∫ ∞

0

t−2k|g(t)|2 dt
) 2n−2k−1

4n
(∫ ∞

0

t2(n−k)|g(t)|2 dt
) 2k+1

4n

≤
√
2C

(∫
R
t−2k|g(t)|2 dt

) 2n−2k−1
4n

(∫
R
t2(n−k)|g(t)|2 dt

) 2k+1
4n

.

Thus Taikov’s inequality follows from Levin’s inequality.
This inequality is closely connected with the problem of optimal recovery of

derivatives from inaccurate information about the Fourier transform (see [9]).
We consider such problem in multidimensional case.

Consider linear operators D1 : L2(Rd) → L2(Rd)∩C(Rd) and D2 : L2(Rd) →
L2(Rd) (D1 and D2 are not necessary differentiation operators). Put

W = {x(·) ∈ L2(Rd) : ∥D2x(·)∥L2(Rd) ≤ 1 }.

We consider the problem of optimal recovery of D1x(τ), τ ∈ Rd, on the class
W from the information about x(·), given inaccurately in L2(Rd)-metric.

As recovery methods we consider all possible mappings m : L2(Rd) → C or
R. The error of a method m is defined as

e(m) = sup
x(·)∈W, y(·)∈L2(Rd)
∥x(·)−y(·)∥

L2(Rd)
≤δ

|D1x(τ)−m(y)|.

The quantity
E = inf

m : L2(Rd)→C(R)
e(m) (41)

is known as the optimal recovery error, and a method on which this infimum is
attained is called optimal.

For the case when d = 1, D1x(·) = x(k)(·), and D2x(·) = x(n)(·), 0 ≤ k < n,
similar problems were considered in [9].

Let d1(t) and d2(·) be measurable functions on Rd. Put

X = {x(·) ∈ L2(Rd) : d2(·)Fx(·) ∈ L2(Rd) }.

We define the operator D2 as follows

D2x(·) = F−1(d2(·)Fx(·))(·).
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Assume that d1(·)Fx(·) ∈ L2(Rd) for all x(·) ∈ X and the operator D1 which is
defined by the equality

D1x(·) = F−1(d1(·)Fx(·))(·)

maps X to L2(Rd) ∩ C(Rd).
Let |d1(·)| and |d2(·)| be homogenous functions of degrees k, n, respectively

(k and n are not necessarily integer), dj(t) ̸= 0, j = 1, 2, for almost all t ∈ Rd.
Put

d̃1(ω) = ρ−k|d1(ρ cosω1, . . . , ρ sinω1 sinω2 . . . sinωd−2 sinωd−1)|,

d̃2(ω) = ρ−n|d2(ρ cosω1, . . . , ρ sinω1 sinω2 . . . sinωd−2 sinωd−1)|.

By Plancherel’s theorem we have

W =

{
x(·) ∈ L2(Rd) :

1

(2π)d

∫
Rd

|d2(t)Fx(t)|2 dt ≤ 1

}
,

∥x(·)− y(·)∥L2(Rd) =
1

(2π)d/2
∥Fx(·)− Fy(·)∥L2(Rd).

Moreover,

D1x(τ) =
1

(2π)d

∫
Rd

d1(t)Fx(t)e
i⟨τ,t⟩ dt,

where ⟨τ, t⟩ = τ1t1 + . . . + τdtd. Thus we obtain problem (23) with p = r = 2,
δ1 = δ(2π)d/2,

ψ(t) =
1

(2π)d
d1(t)e

i⟨τ,t⟩, φ(t) =
1

(2π)d/2
d2(t).

By Theorem 3′ we have

Theorem 5. Let k ≥ 0 and n > k + d/2. Assume that

I =

∫
Πd−1

d̃1
2
(ω)

d̃2
2k+d

n (ω)

J(ω) dω <∞, Πd−1 = [0, π]d−2 × [0, 2π].

Then

E =
(πI)1/2

(2π)d/2
Kd(k, n)δ

2n−2k−d
2n ,

where

Kd(k, n) =

(
2k + d

2n− 2k − d

) 2n−2k−d
4n

(
(2k + d) sin

2k + d

2n
π

)−1/2

.

Moreover, the method

m̂(y) =
1

(2π)d

∫
Rd

d1(t)

(
1 +

δ2(2k + d)

(2π)d(2n− 2k − d)

)−1

y(t)ei⟨τ,t⟩ dt

is optimal recovery method.
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By this theorem analogously to (31) we obtain the exact inequality

|D1x(τ)| ≤
(πI)1/2

(2π)d/2
Kd(k, n)∥x(·)∥

2n−2k−d
2n

L2(Rd)
∥D2x(·)∥

2k+d
2n

L2(Rd)

or

∥D1x(·)∥L∞(Rd) ≤
(πI)1/2

(2π)d/2
Kd(k, n)∥x(·)∥

2n−2k−d
2n

L2(Rd)
∥D2x(·)∥

2k+d
2n

L2(Rd)
. (42)

Now we consider some examples. Define the operator (−∆)n/2, n ≥ 0, as
follows

(−∆)n/2x(·) = F−1(|t|nFx(t))(·).

Put d1(t) = |t|k and d2(t) = |t|n. Then problem (41) is the problem of optimal
recovery of (−∆)k/2x(τ) on the class

W = {x(·) ∈ L2(Rd) : ∥(−∆)n/2x(·)∥L2(Rd) ≤ 1 }

by the inaccurate information about x(·).
By Theorem 5 we obtain

Corollary 6. Let n > k + d/2. Then

E = Cd(k, n)δ
2n−2k−d

2n , Cd(k, n) =
Kd(k, n)

(2d−1πd/2−1Γ(d/2))1/2
,

and the method

m̂(y) =
1

(2π)d

∫
Rd

|t|k
(
1 +

δ2(2k + d)

(2π)d(2n− 2k − d)

)−1

y(t)ei⟨τ,t⟩ dt

is optimal.

By (42) we get the exact inequality

∥(−∆)k/2x(·)∥L∞(Rd) ≤ Cd(k, n)∥x(·)∥
2n−2k−d

2n

L2(Rd)
∥(−∆)n/2x(·)∥

2k+d
2n

L2(Rd)
.

Consider one more example. Let α = (α1, . . . , αd) ∈ Zd
+. We define Dα (the

derivative of order α) as follows:

Dαx(·) = F−1((it)αFx(t))(·),

where (it)α = (it1)
α1 · · · (itd)αd . Let D1 = Dα and D2 = (−∆)n/2. Then (41)

is the problem of optimal recovery of Dαx(τ) on the class W by the inaccurate
information about x(·).

From the well-known Dirichlet formula we have∫
x1≥0,...,xd≥0
x2
1+...+x2

d≤1

xp1−1
1 . . . xpd−1

d dx1 . . . dxd =
Γ(p1/2) . . .Γ(pd/2)

2dΓ(p1/2 + . . .+ pd/2 + 1)
,
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p1, . . . , pd > 0. Using this formula and passing to the polar transformation we
obtain

I(p1, . . . , pd) =

∫
Πd−1

Φ(ω, p1, . . . , pd)J(ω) dω = 2
Γ(p1/2) . . .Γ(pd/2)

Γ(p1/2 + . . .+ pd/2)
,

where

Φ(ω, p1, . . . , pd) = | cosω1|p1−1| sinω1 cosω2|p2−1 × . . .

× | sinω1 sinω2 . . . sinωd−2 cosωd−1|pd−1−1

× | sinω1 sinω2 . . . sinωd−2 sinωd−1|pd−1.

Thus for d1(t) = (it)α and d2(t) = |t|n we have

I = I(2α1 + 1, . . . , 2αd + 1) = 2
Γ(α1 + 1/2) . . .Γ(αd + 1/2)

Γ(|α|+ d/2)
,

where |α| = α1 + . . . αd.

Corollary 7. Let n > |α|+ d/2. Then

E = Cd,α(n)δ
2n−2|α|−d

2n ,

where

Cd,α(n) =
Kd(|α|, n)
(2π)(d−1)/2

(
Γ(α1 + 1/2) . . .Γ(αd + 1/2)

Γ(|α|+ d/2)

)1/2

,

and the method

m̂(y) =
1

(2π)d

∫
Rd

(it)α
(
1 +

δ2(2|α|+ d)

(2π)d(2n− 2|α| − d)

)−1

y(t)ei⟨τ,t⟩ dt

is optimal.

The exact inequality in this case has the form:

∥Dαx(·)∥L∞(Rd) ≤ Cd,α(n)∥x(·)∥
2n−2|α|−d

2n

L2(Rd)
∥(−∆)n/2x(·)∥

2|α|+d
2n

L2(Rd)
.
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