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Let D ⊂ Ck be a domain, ν be a probability measure on D and X be
a closed subspace of L2(ν). Consider D0, . . . , Dn ⊂ D and probability
measures µ0, . . . , µn on D0, . . . , Dn respectively. We suppose that X ⊂
L2(µj), j = 0, 1, . . . , n. We allow one of Dj to coincide with D. In this
case we assume that µj coincides with ν.

Write D = (D0, . . . , Dn), µ = (µ0, . . . , µn), µ = (µ1, . . . , µn), y =
(y1, . . . , yn).

1. Optimal recovery problem

Given y1, . . . , yn defined on D1, . . . , Dn such that

‖fj − yj‖L2(µj) ≤ δj, j = 1, . . . , n,

we are to reconstruct f . Here fj is the restriction of f to Dj and δj ≥ 0,
j = 1, . . . , n are accuracy levels. In particular, δj = 0 means that f is
known precisely on Dj.

A recovery algorithm (method, procedure, etc.) is an operator

A : L2(µ1)× · · · × L2(µn) → L2(µ0).

We consider A(y), y = (y1, . . . , yn), to be the recovered value of f on
D0. At this point we impose no conditions on A.

The maximal possible error of a method A is

e(X,D, µ, δ, A) = sup
f∈X, y∈L2(µ1)×···×L2(µn)
‖fj−yj‖L2(µj)≤δj ,j=1,...,n

‖f0 − A(y)‖L2(µ0)

The optimal recovery error is

E(X,D, µ, δ) = inf
A : L2(µ1)×···×L2(µn)→L2(µ0)

e(X,D, µ, δ, A).
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A method Â such that

E(X,D, µ, δ) = e(X,D, µ, δ, Â)

is called an optimal recovery method.
The problem of finding an optimal recovery method (and sometimes

an extremal function at which the optimal recovery error is attained)
is usually referred to as optimal recovery problem.

2. Extremal problem

The optimal recovery problem is closely related to the following ex-
tremal problem. Find

(1) ‖f0‖L2(µ0) → max, ‖fj‖2
L2(µj)

≤ δ2
j , j = 1, . . . , n, f ∈ X.

A special case of this extremal problem is when D is the unit disk D,
µ0 and µ1 are point masses and µ2 is the normalized Lebesgue measure
on the unit circle. Here the problem turns into

max{|f(a0)| : |f(a1)| ≤ δ1, ‖f‖H2 ≤ δ2},
which might be viewed as a version of the classical Schwarz lemma.
Here we consider another variant of Scwarz Lemma. Let a ∈ D and
Γ be a circle inside of the unit disk, µ be the normalized Lebesgue
measure on Γ, and µ > 0. Find

(2) sup

{∫

Γ

|f |2dµ : f ∈ H2, ‖f‖2
H2 ≤ 1, |f(a)| ≤ δ

}
.

We will consider the case when the circle Γ passes through the origin
and its center lies on the real axis, so that

Γ = {z ∈ C : |z − ρ| = ρ}, 0 < ρ < 1/2.

The corresponding optimal recovery problem is: Reconstruct a Hardy
function f on the circle Γ from its value at a given with some tolerance.

There are several papers where similar problems were considered for
Hardy and Bergman spaces in connection with optimal recovery in both
one and several dimensional cases (see, for example, [4]–[6]).

3. Euler equation for the general problem

Let K(z, w) be the reproducing kernel of X. Write

µ̃ = −µ0 +
n∑

j=1

λjµj.
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Then µ̃ is a regular measure on D and every function from X is square-
integrable with respect to µ̃. For w ∈ D we introduce

dµ̃w(z) = K(z, w)dµ̃(z).

Obviously every function from X is µ̃w-integrable.
We further define

τλ
w(z) =

∫

D

K(zτ)dµ̃w(τ).

Theorem 1. If f̃ ∈ X is a solution of the general extremal problem
above, then there exists a non-negative vector λ̂ = (λ̂1, . . . , λ̂n) such
that

f̂ = (span{τ bλw, w ∈ D})⊥,

and
λ̂j(‖f‖L2(µj) − δj) = 0, j = 1, . . . , n.

We say that a non-negative vector λ = (λ1, . . . , λn) belongs to the
spectrum of the problem, if there exists an admissible for this problem
function f ∈ X such that

1. λj(‖f‖L2(µj) − µj) = 0.

2. f ∈ (span{τλ
w : w ∈ D})⊥.

In this case we call f a spectral function.

Theorem 2. Let Λ be the spectrum of the problem. Then

(3) sup
f∈X

‖f‖L2(µj)≤δj , j=1,...,n

= sup
λ∈Λ

n∑
j=1

λjδ
2
j .

We call a spectral point (λ̂1, . . . , λ̂n) extremal, if the maximum of the
right-hand side of (3) is attained at (λ̂1, . . . , λ̂n).

4. Spectrum of the Schwarz Lemma

Here we have.

τλ
w = − 1

π

∫

Γ

1

1− zτ
· 1

1− τw
· |dτ |
|τ − ρ|+

λ1
1

1− za
· 1

1− aw
+

λ2

2π

∫

|τ |=1

1

1− zτ
· 1

1− τw
|dτ | =

− 1

1− zρ− ρw
+

λ1

(1− za)(1− aw)
+

λ2

1− zw
.
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By Theorem 1 every extremal function satisfies the following equa-
tion

1

1− ρw
f

(
ρ

1− ρw

)
= λ1

f(a)

1− aw

for some λ1, λ2 ≥ 0 and all w ∈ D. Let

b =
1−

√
1− 4ρ2

2ρ
.

Then b is the Denjoy-Wolff point of the following self-mapping of D

z → ρ

1− ρz
,

and the disk bounded by the circle Γ is a hyperbolic neighborhood of
b.

Consider the following functions

ϕj(z) =

√
1− b2

1− bz

(
b− z

1− bz

)j

, j = 0, 1, . . . .

These functions form an orthonormal basis of H2, and they are eigen-
functions of the operator

Tf(z) =
1

1− ρz
f

(
ρ

1− ρz

)
,

and the corresponding eigenvalues are

αj =
b2j

1− ρb
.

Theorem 3. Let a 6= b.
1. If ∣∣∣∣a−

ρ

1− ρ2

∣∣∣∣ ≥
ρ2

1− ρ2
,

or

δ >

√
|a|2ρ2 − |ρ− a|2
aρ + aρ− |a|2 ,

then the spectrum of Schwarz Lemma extremal problem consists of two
parts Λ = Λ1 ∪ Λ2, where

Λ1 = {(0, αj) : |ϕj(a)| ≤ δ},
Λ2 = {(λ1, λ2) : λ1, λ2 > 0, F (λ2) = δ−2, λ1 = h(λ2)},

where

F (λ) =
∞∑

j=0

|ϕj(a)|2
(aj − λ)2

h2(λ), h(λ) =

( ∞∑
j=0

|ϕj(a)|2
aj − λ

)−1

.
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2. If ∣∣∣∣a−
ρ

1− ρ2

∣∣∣∣ <
ρ2

1− ρ2
,

and

δ ≤
√
|a|2ρ2 − |ρ− a|2
aρ + aρ− |a|2 ,

then the spectrum includes in addition the point

Λ3 =

{(
aρ + aρ− |a|2

ρ2
, 0

)}
.

Theorem 4. Let a = b,

Λ1 = {(0, αj) : j = 1, 2, . . . , },
Λ2 = {((1− b2)(α0 − αj), αj) : j = 1, 2, . . . , }.

Then the spectrum of problem is Λ = Λ1 ∪ Λ2, if δ <
1√

1− b2
, and

Λ = Λ1 ∪ Λ2 ∪ {(0, α0)}, if δ ≥ 1√
1− b2

.

It turns out that Λ2 is the most important part of the spectrum.

Proposition 1. If a lies outside Γ, then F (λ) →∞ as λ → 0.

This Proposition implies that if a lies outside Γ, then Λ2 contains
only finite number of points.

Now we will use Theorem 2 to describe the extremal points of the
spectrum.

Proposition 2. If δ ≥ |ϕ0(a)|, then (0, α0) is the extremal point of the
spectrum.

Proposition 3. If a = b and δ < 1/
√

1− b2, then the extremal spectral
point is

(λ̂1, λ̂2) = ((1− b2)(α0 − α1), α1).

Proposition 4. If δ < |ϕ0(a)|, then Λ1 does not contain extremal
spectral points.

Note that the function

g(λ) =
∞∑

j=0

|ϕj(a)|2
αj − λ

is monotone and increases from −∞ to +∞ when λ ∈ (αj+1, αj). Let
ζj be the only zero of g on the interval (αj+1, αj).
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Proposition 5. Let a 6= b. If δ ≤ |ϕ1(a)|, then the extremal spectral
point (λ̂1, λ̂2) is unique, belongs to Λ2 and is determined by the condi-
tion ζ0 < λ̂2 < α0.

Proposition 6. Assume that |ϕ1(a)| < δ < |ϕ0(a)| and

γ =

∣∣∣∣
b− a

1− ab

∣∣∣∣ ≥ b2/3,

then the conclusion of Proposition 5 is valid, that is, the extremal spec-
tral point (λ̂1, λ̂2) is unique, belongs to Λ2 and is determined by the
condition ζ0 < λ̂2 < α0.

5. Optimal Recovery Method

To construct optimal recovery methods we need the following result
(several results of this type may be found in [2], [1], [3]).

Theorem 5. Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, such that
the value of the extremal problem

‖f0‖2
L2(µ0) → max,

∞∑
j=1

λ̂j‖fj‖2
L2(0,µj)

≤
∞∑

j=1

λ̂jδ
2
j , f ∈ X,

is the same as in (1). Moreover, assume that for every ỹ =
(ỹ1, . . . , ỹn) ∈ Y1 × · · · × Yn, where Yj are dense in L2(µj), there exists
fỹ which is a solution of the extremal problem

∞∑
j=1

λ̂j‖fj − ỹj‖2
L2(0,µj)

→ min, f ∈ X.

Moreover, let Â : L2(µ1)×· · ·×L2(µn) → L2(µ0) be a linear continuous
operator, where the norm in L2(µ1)× · · · × L2(µn) is defined as

‖y‖ =

(
n∑

j=1

‖yj‖2
L2(µj)

)1/2

,

such that for all ỹ = (ỹ1, . . . , ỹn) ∈ Y1 × · · · × Yn,

Â(ỹ) = (fỹ)0.

Then
E(X,D, µ, δ) = sup

f∈X
‖fj‖L2(µj)≤δj , j=1,...,n

‖f0‖L2(µ0)

and the method Â(y) is optimal.
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We will apply Theorem 5 to the construction of optimal recovery
method for the Schwarz Lemma type problem considered above.

Consider the extremal problem

(4)
∫

Γ

|f |2dµ → max, λ̂1|f(a)|2 + λ̂2‖f‖2
H2 ≤ λ̂1δ

2 + λ̂2, f ∈ H2,

where as before µ is the normalized Lebesgue measure on Γ and (λ̂1, λ̂2)
is an extremal spectral point for problem (2).

Proposition 7. Suppose that either

1. a 6= b and δ ≤ |ϕ1(a)|, or |ϕ1(a)| < δ < |ϕ0(a)| and γ =

∣∣∣∣
b− a

1− ab

∣∣∣∣ ≥
b2/3,
or
2. a = b and δ < ϕ(b) = 1/

√
1− b2.

Then the values of extremal problems (2) and (4) are the same.

Theorem 6. Suppose that one of the following conditions is satisfied
1. δ ≥ |ϕ0(a)|,
2. δ ≤ |ϕ1(a)|,
3. |ϕ1(a)| < δ < |ϕ0(a)|, γ ≥ b2/3,
4. a = b,

and (λ̂1, λ̂2) is the corresponding extremal spectral point. Then the error
of optimal recovery is given by

√
λ̂1δ2 + λ̂2

and the method

(5) Â(y)(z) =
λ̂1y

λ̂1 + λ̂2(1− |a|2)
· 1− |a|2

1− az

is optimal.

Note that for a = b the optimal method of recovery (5) does not
depend on δ and has the form

Â(y)(z) =
1− |b|2
1− bz

.

6. Open problems

1. It would be desirable to identify the extremal spectral point in all
possible cases. We have shown that in a number of cases the extremal
spectral point is the only point in Λ2 such that ζ0 < λ̂2 < α0. Our
attempts to find a nontrivial-case when this point is not extremal failed.
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Thus, we are tempted to conjecture that the point of Λ2 with the biggest
λ2 is always extremal.
Conjecture. If a 6= b and δ < |ϕ0(a)|, the point in Λ2 such that

ζ0 < λ̂2 < α0 is always the spectral extremal point for problem (2).

2. It is natural to ask which choice of a minimizes the value of prob-
lem (2) (of course, this choice of a leads to the least optimal recovery
error). It follows from above discussion that the point b plays a special
role.
Problem. Does the choice a = b always lead to the least mean square

optimal recovery error?

3. Finally, if in problem (2) we replace the constraint |ϕ(a)| ≤ δ
with

1

2πr

∫

|z−a|=r

|f(z)|2|d(z − a)| ≤ δ, 0 < r < 1− |a|,
then the problem becomes even more difficult. The reason is that in

the right hand side of Euler’s equation the term λ1
f(a)

1− az
is replaced

with

λ1f

(
a− r2z

1− az

)

and the equation turns into
1

1− ρw
f

(
ρ

1− ρw

)
=

λ1

1− az
f

(
a− r2z

1− az

)
+ λ2f(w).

Thus, finding the spectrum in this case is reduced to finding eigen-
values of an operator which is a linear combination of two compact
non-commuting operators. It would be very interesting to find the
eigenbasis which corresponds to this problem and to find the solution.
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