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0 Introduction

In this paper, we give a short history of optimal recovery problems and some gen-

eral results. There are several surveys and monographs devoted to the theory of optimal

recovery[1-6]. Here, we try to pay special attention to the construction of optimal recovery

methods.

One of the first example of optimal recovery problems is the problem of the best quadra-

ture. Let W be some class of functions integrable on the interval [a, b]. The problem is to

find

Lf =

∫ b

a

f(x)dx,

knowing the information about function values at the system of knots a 6 x1 < · · · < xn 6 b.

Thus, using the vector

If = (f(x1), · · · , f(xn)),

we have to give an approximate value of Lf . Any linear method of approximation

ϕ(If) =

n∑

j=1

pjf(xj)

is called the quadrature formula.

The quadrature formula

ϕ̂(If) =

n∑

j=1

p̂jf(xj)

is called the best quadrature formula if

sup
f∈W

|Lf − ϕ̂(If)| = inf
p1,··· ,pn∈R

sup
f∈W

∣∣∣Lf −

n∑

j=1

pjf(xj)
∣∣∣. (1)

The first setting of such problems were given by Sard[7] and Nikol’skii[8]. The develop-

ment of these problems may be found in [9].

Smolyak[10] considered the following generalization of (1). Let X be a linear space and

L be a linear functional on X . Put

Ix = (l1x, · · · , lnx), x ∈ X,
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where lj , j = 1, · · · , n, are linear functionals on X . For W ⊂ X , we consider the problem

of the optimal recovery of L on W by the information operator I. Any method of recovery

is a mapping ϕ : Rn → R. For a given method ϕ, we define the error of this method by

e(L, W, I, ϕ) = sup
x∈W

|Lx − ϕ(Ix)|.

We want to find the optimal error of recovery

E(L, W, I) = inf
ϕ : Rn→R

e(L, W, I, ϕ),

and an optimal method ϕ̂ for which

e(L, W, I, ϕ̂) = E(L, W, I).

Theorem 1[10] If W is a convex and centrally-symmetric set, then among all optimal

methods, there exists a linear optimal method and

E(L, W, I) = sup
x∈W
Ix=0

|LX |. (2)

Thus, if W is a convex and centrally-symmetric set, then there exist p̂1, · · · , p̂n such that

the method

ϕ̂(Ix) =
n∑

j=1

p̂j ljx

is an optimal method of recovery.

Any element x0 ∈ W for which Ix0 = 0 and

|Lx0| = sup
x∈W
Ix=0

|Lx|,

we call extremal. The problem of finding an extremal element often turns out more simple

than the problem of finding an optimal recovery method.

Let us consider a simple example. Let HR
∞ be the space of functions analytic in the

unit disk

D := {z ∈ C : |z| < 1},

bounded, and real in the interval (−1, 1). As the set W , we consider HR
∞ which is the set of

functions from HR
∞ satisfying the condition

sup
z∈D

|f(z)| 6 1.
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For the problem of optimal recovery of functions from HR
∞ at the point τ ∈ (−1, 1)

by their values at zero, the dual problem (2) may be solved immediately using the Schwarz

lemma,

sup
f∈HR

∞
f(0)=0

|f(τ)| = |τ |.

Thus, the function f0(z) = z is extremal for the considered problem. However, the problem

of finding an optimal method of recovery is not so evident.

1 Method of parametrization

In [11], we offer an approach allowing to obtain an optimal method of recovery using

some parametrization of extremal element.

Theorem 2[11] Let X be a real linear space, W a convex centrally symmetric set from

X , and x0 an extremal element in the problem of optimal recovery of a linear functional

L on the set W by the values of linear functionals l1x, · · · , lnx. Assume that for all M =

(t1, · · · , tn) ∈ R
n from some neighborhood of M0∈ R

n, there exists x(M) ∈ W such that

x(M0) = x0. Then, if the functions ω(M) = Lx(M), ωj(M) = ljx(M), j = 1, · · · , n, have

continuous partial derivatives with respect to all variables in a neighborhood of M0 and the

determinant of the matrix

J(M) =




∂ω1

∂t1
· · ·

∂ωn

∂t1
...

...
∂ω1

∂tn
· · ·

∂ωn

∂tn




does not vanish at M0, then the method

ϕ̂(Ix) =

n∑

j=1

Cj ljx, (3)

where C1, · · · , Cn are solutions of the system

J(M0)




C1

...

Cn


 =




∂ω

∂t1
(M0)

...
∂ω

∂tn
(M0)




,

is the unique linear optimal method of recovery.

It is sometimes convenient to use another form of the optimal method of recovery.
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Corollary 1 Let the conditions of Theorem 2 are fulfilled. Then, the unique linear

optimal method of recovery is

ϕ̂(Ix) =

n∑

j=1

yj
∂ω

∂tj
(M0),

where y1, · · · , yn are the solutions of the system
n∑

j=1

yj
∂ωk

∂tj
(M0) = lkx, k = 1, · · · , n. (4)

Proof For

a =




a1

...

an


 , b =




b1

...

bn


 ,

put

(a, b) =

n∑

j=1

ajbj.

Set

ω̂ =




∂ω

∂t1
(M0)

...
∂ω

∂tn
(M0)




, z =




l1x
...

lnx


 .

Then, the optimal method (3) has the form

ϕ̂(Ix) = (J−1(M0)ω̂, z) = (ω̂, (JT(M0))
−1z).

Put y = (JT(M0))
−1z. Then, the coordinates of y = (y1, · · · , yn)T satisfy the system (4).

Now, let us construct the optimal recovery method of functions from HR
∞ at the point

τ ∈ (−1, 1) by their values at zero. Put

f1(z, t) =
z + t

1 + tz
.

It is easy to see that f1(z, t) ∈ HR
∞ for all t ∈ (−1, 1). Moreover, f1(z, 0) = f0(z) = z

and f1(0, t) = t. Thus, here M = t ∈ R, M0 = 0, x(t) = f1(z, t), ω(t) = f1(τ, t), ω1(t) =

f1(0, t) = t.

From Corollary 1, we obtain that the unique linear optimal method of recovery has the

form ϕ̂(f(0)) = y1ϕ
′(0), where y1 satisfies the equality y1ω

′
1(0) = f(0). Consequently, it has

the form

ϕ̂(f(0)) =
(∂f1

∂t
(0, 0)

)−1 ∂f1

∂t
(τ, 0)f(0) = (1 − τ2)f(0).

More general results concerning the considered problem may be found in [12] and [13] (they

also can be obtained by the proposed method).
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2 Optimal interpolation of smooth functions

Denote by W r
∞[−1, 1], r ∈ N, the Sobolev class of functions x(t), t ∈ [−1, 1], for which

x(r−1) is absolutely continuous on [−1, 1] and

ess sup
t∈[−1,1]

|x(r)(t)| 6 1.

Let

−16 t1 < · · · < tn 61, νj ∈ N, 16νj 6r, j = 1,· · · ,n, m = ν1+· · ·+νn >r. (5)

Assume that for any x ∈ W r
∞([−1, 1]), we know

Fx = (x(t1), · · · , x(ν1−1)(t1), · · · , x(tn), · · · , x(νn−1)(tn)). (6)

Consider the problem of optimal recovery of x(τ), τ ∈ [−1, 1], x ∈ W r
∞([−1, 1]), by the

information Fx. In other words, we would like to interpolate a function x ∈ W r
∞([−1, 1]) at

the point τ using values of x and its derivatives at some system of points t1, · · · , tn. In this

case, we put

E(τ, W r
∞([−1, 1]), F ) = inf

ϕ : RN→R

sup
x∈W r

∞([−1,1])

|x(τ) − ϕ(Fx)|.

To obtain the solution of this optimal recovery problem, we recall some definitions and

results about splines.

A perfect spline of degree r ∈ N with knots s1 < · · · < sN is a function of the form

s(t) = pr−1(t) +
α

r!

(
tr + 2

N∑

j=1

(−1)j(t − sj)
r
+

)
,

where pr−1 is a polynomial of degree r − 1, α = −1 or α = 1, and

t+ =

{
t, t > 0,

0, t < 0.

A polynomial spline of degree r − 1, r ∈ N, with N knots s1 < · · · < sN is a function

of the form

S(t) =

r−1∑

j=0

ajt
j +

N∑

j=1

bj(t − sj)
r−1
+ .

Suppose that conditions (5) are fulfilled. Then, it is known (see, for example, [14]) that

there exists a perfect spline s of degree r with m − r knots

−1 < s1 < · · · < sm−r < 1 (7)
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such that

s(ν)(tj) = 0, ν = 0, 1, · · · , νj − 1, j = 1, · · · , n.

Moreover, for any xjν , ν = 0, 1, · · · , νj − 1, j = 1, · · · , n, there exists the unique polynomial

spline S of order r − 1 with knots (7) for which

S(ν)(tj) = xjν , ν = 0, 1, · · · , νj − 1, j = 1, · · · , n.

Theorem 3[15-16] Assume that conditions (5) are fulfilled and s1 < · · · < sm−r are

the knots of a perfect spline s such that

s(ν)(tj) = 0, ν = 0, 1, · · · , νj − 1, j = 1, · · · , n.

Then, for any τ ∈ [−1, 1],

E(τ, W r
∞([−1, 1]), F ) = |s(τ)|, (8)

and the unique linear optimal recovery method is the polynomial spline S of order r − 1

with knots s1, · · · , sm−r satisfying conditions

S(ν)(tj) = x(ν)(tj), ν = 0, 1, · · · , νj − 1, j = 1, · · · , n. (9)

We give a simple proof of this theorem using the method of parametrization which was

described in the previous section. Moreover, using this method, we can prove the uniqueness

of the linear optimal method (which was not done in [15] and [16]).

Proof It follows from (2) that

E(τ, W r
∞([−1, 1]), F ) = sup

x∈W r
∞([−1,1])

F x=0

|x(τ)|.

Assume that there exists x ∈ W r
∞([−1, 1]) such that F x̂ = 0 and |x̂(τ)| > |s(τ)|. Put

y = s − ρx̂, ρ =
s(τ)

x̂(τ)
.

Then, y has m + 1 zeros with multiplicities, and consequently, y(r) has at least m − r +

1 sign changes. On the other hand, taking into account that |ρ| < 1 on every interval

(−1, s1), (s1, s2), · · · , (sm−r, 1), we can get that the function y(r) has the same sign as s(r)(·).

Thus, y(r) has exactly m − r sign changes. The obtained contradiction proves (8).

Assume that the perfect spline s has the form

s(t) =

r−1∑

j=0

ajt
j +

α

r!

(
tr + 2

m−r∑

j=1

(−1)j(t − sj)
r
+

)
.
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For points M = (b0, · · · , br−1, u1, · · · , um−r) ∈ Rm sufficiently close to the point M0 =

(a0, · · · , ar−1, s1, · · · , sm−r) ∈ R
m consider functions

sM (t) =
r−1∑

j=0

bjt
j +

α

r!

(
tr + 2

m−r∑

j=1

(−1)j(t − uj)
r
+

)
.

It is clear that sM ∈ W r
∞([−1, 1]) for all M from sufficiently small neighborhood of M0.

Moreover, sM0 = s. We have

∂sM (t)

∂bj

∣∣∣
M0

= tj , j = 0, · · · , r − 1,

∂sM (t)

∂uj

∣∣∣
M0

=
2α(−1)j+1

(r − 1)!
(t − sj)

r−1
+ , j = 1, · · · , m − r.

Putting

S(t) =

r−1∑

j=0

yjt
j +

m−r∑

j=1

yj(t − sj)
r−1
+ ,

we obtain that the system (4) has the same form as (9). Thus, by Corollary 1, the value of

the interpolation spline S at the point τ is the unique linear optimal method of recovery.

3 Optimal recovery of linear functionals from inaccu-

rate information

Let X be a linear space, L be a linear functional on X , Ix = (l1x, · · · , lnx), x ∈ X ,

where lj , j = 1, · · · , n, are linear functionals on X , and W ⊂ X . Now, assume that for

all x ∈ W instead of exact values of Ix, we know approximate values y ∈ Rn such that

‖Ix − y‖ 6 δ, where ‖ · ‖ is any norm in Rn, and δ > 0 is the error of approximate values.

In this case, the error of a recovery method ϕ is defined as follows:

e(L, W, I, δ, ϕ) = sup
x∈W,y∈Rn

‖Ix−y‖6δ

|Lx − ϕ(y)|.

Again, we are interested in the optimal error of recovery

E(L, W, I, δ) = inf
ϕ: Rn→R

e(L, W, I, δ, ϕ)

and in an optimal method ϕ̂ for which

e(L, W, I, δ, ϕ̂) = E(L, W, I, δ).

It was proved in [17] an analog of Smolyak’s result.
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Theorem 4[17] If W is a convex and centrally-symmetric set, then among all optimal

methods, there exists a linear optimal method, and

E(L, W, I, δ) = sup
x∈W

|Ix‖6δ

|Lx|.

We consider a more general problem of optimal recovery. Let X and Y be linear spaces,

L be a linear functional on X , and W ⊂ X . Let F : W → Y be a multivalued mapping. It

means that for any x ∈ W , F (x) is a subset of Y . The problem is to recover Lx, x ∈ W

by the information F (x). The multivalued mapping F is modeling inaccurate information.

Usually, F has the form

F (x) = {y ∈ Y : ‖Ix − y‖ 6 δ}, (10)

where I : X → Y is a linear operator, Y is a normed linear space, and δ > 0. In this case,

we speak about optimal recovery of L on W by inaccurate values of the operator I.

For any recovery method ϕ : Y → R, we define the error of the method ϕ by

e(L, F, ϕ) = sup
(x,y)∈grF

|Lx − ϕ(y)|, (11)

where

grF = {(x, y) : x ∈ W, y ∈ F (x)}.

The optimal error of recovery is defined as follows:

E(L, F ) = inf
ϕ:Y →R

e(L, F, ϕ). (12)

Let A ⊂ X . Denote by bco A the convex centrally-symmetric hull of A

bco A =
{
x : x =

n∑

j=1

λjxj , xj ∈ A,

n∑

j=1

|λj | 6 1, n ∈ N

}
.

For any multivalued mapping F : W → Y , we define the convex centrally-symmetric multi-

valued mapping bco F : bco W → Y by

bco F (x) = {y ∈ Y : (x, y) ∈ bco grF}.

Let y ∈ F (W ). The value

r(L, F, y) = inf
c∈R

sup
x∈F−1(y)

|Lx − c|

is called the Chebyshev radius of the set L(F−1(y)). The value

R(L, F ) = sup
y∈F (W )

r(L, F, y)
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is called the radius of information in problem (12).

Theorem 5[18] For the existence of the linear optimal recovery method in (12), it is

necessary and sufficient that

R(L, F ) = R(L, bco F ).

Moreover, in this case,

E(L, F ) = sup
x∈(bco F )−1(0)

|Lx|.

For F defined by (10), we put

e(L, F, ϕ) = e(L, W, I, δ, ϕ), E(L, F ) = E(L, W, I, δ).

If W is a convex and centrally-symmetric set, then bco F = F . Consequently, from Theorem

5, we immediately obtain that Theorem 4 holds in this general multi-dimensional case.

4 Optimal recovery methods for inaccurate information

Consider the problem (12) for F defined by (10).

Theorem 6 Let W be a convex and centrally-symmetric set and Y be a normed linear

space. Assume that there exist such linear continuous functionals ϕ̂ and x̂ ∈ W that

(i) sup
x∈W

|Lx − ϕ̂(Ix)| = Lx̂ − ϕ̂(Ix̂),

(ii) ϕ̂(Ix̂) = δ‖ϕ̂‖,

(iii) ‖Ix̂‖ 6 δ.

Then, ϕ̂ is an optimal method of recovery and

E(L, W, I, δ) = Lx̂. (13)

Proof It follows from generalization of Theorem 4 that

E(L, W, I, δ) = sup
x∈W

‖Ix‖6δ

|Lx| > |Lx̂| = Lx̂.

On the other hand, using the conditions (i)∼(iii), for all x ∈ W and y ∈ Y such that

‖Ix − y‖ 6 δ, we have

|Lx − ϕ̂(y)| = |Lx − ϕ̂(Ix) + ϕ̂(Ix − y)| 6 |Lx − ϕ̂(Ix)| + |ϕ̂(Ix − y)|

6 Lx̂ − ϕ̂(Ix̂) + ‖ϕ̂‖δ = Lx̂ 6 E(L, W, I, δ).

Thus,

e(L, W, I, δ, ϕ̂) 6 Lx̂ 6 E(L, W, I, δ) 6 e(L, W, I, δ, ϕ̂).
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Consequently, ϕ̂ is an optimal method of recovery and (13) holds.

We apply this result to optimal recovery of function values from their Fourier coeffi-

cients. Let L2(T) be the space of 2π periodic functions defined on the interval T = [−π, π]

with identified endpoints with the norm

‖x‖ =
( 1

π

∫

T

|x(t)|2dt
)1/2

.

Denote by W r
2 (T) the Sobolev class of 2π periodic functions defined on T with absolutely

continuous x(r−1) and ‖x(r)‖ 6 1. For any x ∈ W r
2 (T) and all t ∈ T, we have

x(t) =
a0

2
+

∞∑

k=1

(ak cos kt + bk sin kt).

We consider the problem of optimal recovery of x(τ), τ ∈ T, on the class W r
2 (T) from

the information about inaccurate values of Fourier coefficients ak, k ∈ A, and bk, k ∈ B,

where A and B are some finite subsets of Z+ = {0, 1, · · · }. More precisely, instead of ak,

k ∈ A, and bk, k ∈ B, we know ãk, b̃k, such that

|ak − ãk| 6 δ, k ∈ A, |bk − b̃k| 6 δ, k ∈ B.

Set N = card A + card B and

FA,Bx = ({ak}k∈A, {bk}k∈B).

Denote by lN∞ the space of vectors y = (y1, · · · , yN ) with the norm

‖y‖lN∞
= max

16k6N
|yk|.

Thus, for every x ∈ W r
2 (T), we know the vector

y = ({ãk}k∈A, {b̃k}k∈B)

such that

‖FA,Bx − y‖lN∞
6 δ.

In accordance with (11) and (12), we put

e(W r
2 (T), FA,B , δ, ϕ) = sup

x∈W r
2 (T),y∈lN∞

‖FA,Bx−y‖
lN∞

6δ

|x(τ) − ϕ(y)|,

E(W r
2 (T), FA,B , δ) = inf

ϕ:lN∞→R

e(W r
2 (T), FA,B , δ, ϕ).

We say that ϕ̂ is the optimal method of recovery if

E(W r
2 (T), FA,B , δ) = e(W r

2 (T), FA,B , δ, ϕ̂).
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It is easy to show that if 0 /∈ A, then E(W r
2 (T), FA,B , δ) = ∞ (for the proof, it suffices

to consider only constant functions from W r
2 (T)). Therefore, in what follows, we assume

that 0 ∈ A. Set Ã = A\{0} and consider the vector

({cos kτ

k2r

}

k∈ eA
,
{sin kτ

k2r

}

k∈B

)
.

Let

|γ2| > · · · > |γN | (14)

be the modules of the elements of this vector, sorted in a descending order. If γs =

k−2r
s cos ksτ , then the corresponding index will be denoted by ks(A), and if γs = k−2r

s sin ksτ ,

then the corresponding index will be denoted by ks(B). For every 2 6 s 6 N , we denote by

As and Bs the subsets of indexes k2(C), · · · , ks(C) for C = A and C = B, respectively. For

convenience, we put A1 = B1 = ∅. We also assume that the sum over the empty set equals

0.

Put

p = p(δ) = max
{
s : γ2

s

(
1 − δ2

∑

k∈As∪Bs

k2r
)

> δ2
∑

k∈N\As

cos2 kτ

k2r
+ δ2

∑

k∈N\Bs

sin2 kτ

k2r
, 2 6 s 6 N

}

(we assume that p = 1, if the set of such s is empty),

λ =




∑

k∈N\Ap

cos2 kτ

k2r
+

∑

k∈N\Bp

sin2 kτ

k2r

1 − δ2
∑

k∈Ap∪Bp

k2r




1/2

,

and

λs = k2r
s (C)(|γs| − λδ), c̃s =

{
sign γsãks(C), C = A,

sign γsb̃ks(C), C = B.

Theorem 7 For all δ > 0,

E(W r
2 (T), FA,B , δ) =

δ

2
+ δ

p∑

s=2

λs + λ,

and the method

ϕ̂(y) =
ã0

2
+

p∑

s=2

λsc̃s (15)
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is the optimal method of recovery.

Proof We define the sequences ãk and b̃k as follows:

âk =





δ sign cos kτ, k ∈ Ap ∪ 0;
cos kτ

λk2r
, k /∈ Ap ∪ 0.

b̂k =





δ sign sin kτ, k ∈ Bp;
sin kτ

λk2r
, k /∈ Bp.

It is easy to check that the following equality:

∞∑

k=1

k2r(â2
k + b̂2

k) = 1 (16)

holds.

Put

x̂(t) =
â0

2
+

∞∑

k=1

(âk cos kt + b̂k sin kt).

It follows from (16) that ‖x̂(r)‖ = 1. Thus, x̂ ∈ W r
2 (T).

We will apply Theorem 6. It suffices to check conditions (i)∼(iii). We begin with the

condition (iii). Let us show that ‖FA,Bx̂‖lN∞
6 δ. In other words, we should show that

|âk| 6 δ for all k ∈ A and |̂bk| 6 δ for all k ∈ B. If p = N , then it is obvious. Let p < N .

If for some k > 0 and k ∈ A\Ap, the inequality |âk| > δ holds or for some k ∈ B\Bp, the

inequality |̂bk| > δ holds, then there exists γs, p < s 6 N , for which

γ2
s > δ2λ2.

In view of (14), it implies that

γ2
p+1 > δ2λ2. (17)

Assume that

γ2
p+1 =

cos2 kp+1(A)τ

k4r
p+1(A)

.

Then, (17) may be written in the form

cos2 kp+1(A)τ

k4r
p+1(A)

(
1 − δ2

∑

k∈Ap∪Bp

k2r
)

> δ2
∑

k∈N\Ap

cos2 kτ

k2r
+ δ2

∑

k∈N\Bp

sin2 kτ

k2r
.

Since Ap+1 = Ap ∪{kp+1}, and Bp+1 = Bp, the last inequality may be rewritten in the form

cos2 kp+1(A)τ

k4r
p+1(A)

(
1 − δ2

∑

k∈Ap+1∪Bp+1

k2r
)

> δ2
∑

k∈N\Ap+1

cos2 kτ

k2r
+ δ2

∑

k∈N\Bp+1

sin2 kτ

k2r
.
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However, this contradicts the definition of p. The case when

γ2
p+1 =

sin2 kp+1(B)τ

k4r
p+1(B)

,

may be considered analogously.

Let us prove that for all sequences {ak}, k = 0, 1, · · · , and {bk}, k = 1, 2, · · · , such that

∞∑

k=1

k2r(a2
k + b2

k) < ∞,

the equality

∞∑

k=1

(ak cos kτ + bk sinkτ) =

p∑

s=2

λscs + λ

∞∑

k=1

k2r(âkak + b̂kbk) (18)

holds, where

cs =

{
sign γsaks(C), C = A,

sign γsbks(C), C = B.

Indeed, we have

p∑

s=2

λscs+λ

∞∑

k=1

k2r(âkak+ b̂kbk)=

p∑

s=2

k2r
s |γks |cs−λδ

p∑

s=2

k2r
s cs

+λδ

p∑

s=2

k2r
s cs+λ

∑

k∈N\Ap

k2r cos kτ

λk2r
ak+λ

∑

k∈N\Bp

k2r sin kτ

λk2r
bk

=

∞∑

k=1

(ak cos kτ + bk sin kτ).

It follows from (18) that for any x ∈ W r
2 (T),

x(τ) − ϕ̂(FA,Bx) = λ

∞∑

k=1

k2r(âkak + b̂kbk).

Using the Cauchy-Schwarz inequality, we obtain

|x(τ) − ϕ̂(FA,Bx)| 6 λ
( ∞∑

k=1

k2r(â2
k + b̂2

k)
)1/2( ∞∑

k=1

k2r(a2
k + b2

k)
)1/2

6 λ.

On the other hand,

|x̂(τ) − ϕ̂(FA,Bx̂)| = λ

∞∑

k=1

k2r(â2
k + b̂2

k) = λ.

Consequently, the condition (i) holds.
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It follows from the definition of p that λp > 0. In view of (14), we obtain that λs > 0

for all s = 2, · · · , p − 1. We have

ϕ̂(FA,Bx̂) = δ
(1

2
+

p∑

s=2

λs

)
= δ‖ϕ̂‖.

It means that the condition (ii) is fulfilled. Now, the assertion of the theorem follows from

Theorem 6.

The case when the Fourier coefficients are known with different errors, that is,

|ak − ãk| 6 δk, k ∈ A, |bk − b̃k| 6 δk, k ∈ B

may be considered in a similar way (see [19]).

5 Optimal recovery of linear operators

Let Y0, Y1, · · · , Yn be normed linear spaces and Ij : X → Yj , j = 0, 1, · · · , n, be linear

operators. We consider the problem of optimal recovery of the operator I0 on the set

W = {x ∈ X : ‖Ijx‖Yj 6 δj , δj > 0, j = 1, · · · , k},

where 0 6 k < n, from inaccurate values of Ik+1, · · · , In (if k = 0, we set W = X).

More precisely, we assume that for every x ∈ W , we know a vector y = (yk+1, · · · , yn) ∈

Yk+1 × · · · × Yn such that ‖Ijx − yj‖Yj 6 δj , δj > 0, j = k + 1, · · · , n.

By the analogy with the previous setting, we define the error of a recovery method

ϕ : Yk+1 × · · · × Yn → Y0 as follows:

e(I, δ, ϕ) = sup
x∈W,y∈Yk+1×···×Yn

‖Ijx−yj‖Yj
6δj ,j=k+1,··· ,n

‖I0x − ϕ(y)‖Y0 .

The value

E(I, δ) = inf
ϕ:Yk+1×···×Yn→Y0

e(I, δ, ϕ) (19)

is called the optimal error of recovery (here I = (I0, I1 · · · , In), δ = (δ1, · · · , δn)). Methods

for which the lower bound in (19) is attained, we call optimal methods of recovery.

For the problem of optimal recovery of linear operators, there are no such general results

similar to Theorem 4 or Theorem 5. Moreover, sometimes there is no linear optimal method

even for the problem of optimal recovery from exact information and with Hilbert spaces

Y0, Y1, · · · , Yn. Let us consider the corresponding example.

Let X = R3, Y0 = l22 (ln2 is the space Rn with the usual Euclidean metric), Y1 = Y2 =

Y3 = Y4 = l12. For x = (x1, x2, x3) ∈ R
3, we set

I0x = (x1, x2), I1x = x1 + 2x2, I2x = x1 − 2x2,

I3x = x3, I4x = x1 + x3.
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Let k = 3, δ1 = δ2 = 1, δ3 = 2/15, δ4 = 0. Thus, we consider the problem of optimal

recovery of I0 on the set

W =
{
x ∈ R

3 : |I1x| 6 1, |I2x| 6 1, |I3x| 6
2

15

}

from exact values of the functional I4. It is easy to see that the set W is the parallelepiped

W =
{

x ∈ R
3 : |x1| + 2|x2| 6 1, |x3| 6

2

15

}
.

Consider the method

ϕ0(y) =






0, |y| 6
4

15
,

(y, 0), |y| >
4

15
.

If |x1 + x3| 6 4/15, then

sup
(x1,x2,x3)∈W

|x1+x3|64/15

||(x1, x2) − ϕ0(x1 + x3)||l22 = sup
(x1,x2,x3)∈W

|x1+x3|64/15

||(x1, x2)||l22 .

Since

|x1| = |x1 + x3 − x3| 6 |x1 + x3| + |x3| 6
2

5
,

we have

sup
(x1,x2,x3)∈W

|x1+x3|64/15

||(x1, x2) − ϕ0(x1 + x3)||l22 6 sup
(x1,x2,x3)∈W

|x1|62/5

||(x1, x2)||l22 =
1

2
.

If (x1, x2, x3) ∈ W and |x1 + x3| > 4/15, then |x1| > |x1 + x3| − |x3| > 2/15. Conse-

quently, |x2| < 13/30. Therefore,

sup
(x1,x2,x3)∈W

|x1+x3|>4/15

||(x1, x2) − ϕ0(x1 + x3)||l22 6 sup
(x1,x2,x3)∈W

|x2|<13/30

||(−x3, x2)||l22

<

√
4

225
+

169

900
<

1

2
.

Thus,

E(I, δ) 6 e(I, δ, ϕ0) 6
1

2
.

On the other hand, for any linear method ϕ(y) = (c1y, c2y), c1, c2 ∈ R, we have

e(I, δ, ϕ) = sup
(x1,x2,x3)∈W

√
(x1 − c1(x1 + x3))2 + (x2 − c2(x1 + x3))2.

If c1 6 0, considering the point (1, 0, 0) ∈ W , we obtain

e(I, δ, ϕ) >

√
(1 − c1)2 + c2

2 > 1.
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If c1 > 0, considering the point (0, 1/2, 2/15sign c2) ∈ W , we obtain

e(I, δ, ϕ) >

√
c2
1

4

15
+

(1

2
+ |c2|

2

15

)2

>
1

2
.

Consequently, for any linear method ϕ,

e(I, δ, ϕ) >
1

2
> E(I, δ).

Nevertheless, we prove a result which sometimes helps to construct a family of linear

optimal methods.

Theorem 8 Assume that there exist such λj > 0, j = 1, · · · , n, and an element

x̂ ∈ W , for which ‖Ij x̂‖Yj 6 δj , j = 1, · · · , n, and

‖I0x̂‖Y0 >

( n∑

j=1

λjδ
2
j

)1/2

.

Moreover, assume that the linear operators Sj : Yj → Y0 satisfy the conditions

(a) I0 =
n∑

j=1

SjIj ,

(b)
∥∥∥

n∑
j=1

Sjzj

∥∥∥
2

Y0

6
n∑

j=1

λj‖zj‖
2
Yj

, for all zj ∈ Yj , j = 1, · · · , n.

Then, for any such operators, the method

ϕ̂(y) = Sk+1yk+1 + · · · + Snyn, y ∈ Yk+1 × · · · × Yk

is optimal, and

E(I, δ) =
( n∑

j=1

λjδ
2
j

)1/2

.

Proof Let ϕ : Yk+1 × · · · × Yn → Y0 be an arbitrary method of recovery. Then,

2‖I0x̂‖Y0 = ‖I0x̂ − ϕ(0) − (I0(−x̂) − ϕ(0))‖Y0

6 ‖I0x̂ − ϕ(0)‖Y0 + ‖I0(−x̂) − ϕ(0)‖Y0 6 2e(I, δ, ϕ).

In view of the arbitrariness ϕ, we have

E(I, δ) > ‖I0x̂‖Y0 >

( n∑

j=1

λjδ
2
j

)1/2

. (20)

To estimate the error of the method ϕ̂, consider the following extremal problem:

∥∥∥I0x −

n∑

j=k+1

Sjyj

∥∥∥
2

Y0

→ max, ‖Ijx‖
2
Yj

6 δ2
j , j = 1, · · · , k,

‖Ijx − yj‖
2
Yj

6 δ2
j , j = k + 1, · · · , n, x ∈ X.



476 Communication on Applied Mathematics and Computation Vol. 30

Set zj = Ijx, j = 1, · · · , k, zj = Ijx − yj , j = k + 1, · · · , n. Then, taking into account (a),

this problem may be rewritten in the form

∥∥∥
n∑

j=1

Sjzj

∥∥∥
2

Y0

→ max, ‖zj‖
2
Yj

6 δ2
j , j = 1, · · · , n, x ∈ X. (21)

In view of (b), we obtain

∥∥∥
n∑

j=1

Sjzj

∥∥∥
2

Y0

6

n∑

j=1

λj‖zj‖
2
Yj

6

n∑

j=1

λjδ
2
j .

Thus,

E(I, δ) 6 e(I, δ, ϕ̂) 6

( n∑

j=1

λjδ
2
j

)1/2

.

These inequalities together with (20) prove the theorem.

We apply this theorem to construct a family of optimal recovery methods of the k-th

derivative, 1 6 k < r, for functions from the Sobolev class W r
2 (T) knowing a finite number

of their Fourier coefficients given inaccurately. To simplify calculations, we will consider the

complex case.

Assume that we have the Fourier series for some 2π-periodic function x,

x(t) =

+∞∑

j=−∞

xje
ijt.

Suppose that we know only a finite number of the Fourier coefficients which are given with

an error. That is, we know x̃ = (x̃−N , · · · , x̃N ) such that

∑

|j|6N

|xj − x̃j |
2

6 δ2. (22)

Using the information x̃, we want to recover the k-th derivative of x.

One of the simplest methods of recovery is as follows:

x(k)(t) ≈
∑

|j|6N

(ij)kx̃je
ijt.

However, it is not very good because the error of terms (ij)kx̃j in |j|k times larger than the

error of x̃j .

In practice, this effect is known very well. Those who deal with such problems simply

cut the terms with high frequencies and smooth other terms by some filter. Such filter was

constructed in a similar problem in Theorem 7.

The problem which we would like to pose is: what is a best method of recovery? In

other words, what is a best possible filter? Now, we give the exact setting of the problem.
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Define L2(T) as the space of square integrable real-valued or complex-valued functions

x on T with the norm

‖x‖ =
( 1

2π

∫

T

|x(t)|2 dt
)1/2

.

The Sobolev space Wr
2 (T) is the set of all 2π-periodic real-valued or complex-valued functions

x for which the (r − 1)-st derivative is absolutely continuous and ‖x(r)‖ < ∞. The Sobolev

class W r
2 (T) is the set of all functions x ∈ Wr

2 (T) for which ‖x(r)‖ 6 1.

Denote by l2N+1
2 , N ∈ Z+, the space of vectors y = (y−N , · · · , yN ) with the norm

‖y‖l2N+1
2

=
( N∑

j=−N

|yj |
2
)1/2

.

We consider the problem (19) for X = Wr
2 (T), Y0 = Y1 = L2(T), Y2 = l2N+1

2 , I0x = x(k),

I1x = x(r), I2x = {xj}
N
j=−N ,

xj =
1

2π

∫

T

x(t)e−ijtdt,

δ1 = 1, and δ2 = δ > 0. The appropriate error of optimal recovery, we denote by

E(Dk, W r
2 (T), δ).

Set

s0 = min

{
s ∈ Z+ :

(s + 1)2k − s2k

(s + 1)2r − s2r
6

1

(N + 1)2(r−k)

}
. (23)

It is easy to prove that s0 6 N . We will consider three cases:

i) s0 > 1,
1

(s + 1)r
6 δ <

1

sr
, 1 6 s 6 s0 − 1;

ii) s0 > 0, 0 < δ <
1

sr
0

;

iii) s0 = 0 or δ > 1.

In Case i), we put

λ1 =
(s + 1)2k − s2k

(s + 1)2r − s2r
, λ2 =

(s + 1)2rs2k − s2r(s + 1)2k

(s + 1)2r − s2r
;

in Case ii), we put

λ1 =
1

(N + 1)2(r−k)
, λ2 = s2k

0 −
s2r
0

(N + 1)2(r−k)
,

and in Case iii), we put λ1 = 1, λ2 = 0.

Theorem 9 For all δ > 0,

E(Dk, W r
2 (T), δ) =

√
λ1 + λ2δ2.
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If s0 > 0 and δ < 1, then for all θj , |θj | 6 1, 0 < |j| 6 N , the methods

ϕ̂(x̃)(t) =
∑

0<|j|6N

(ij)kαj x̃je
ijt, (24)

where

αj =
λ2 + θjj

r−k
√

λ1λ2(λ2 + λ1j2r − j2k)

λ2 + λ1j2r
, (25)

are optimal.

If s0 = 0 or δ > 1, then the method ϕ̂(x̃)(t) = 0 is optimal.

Proof In Case i), put

x̂s =
(δ2(s + 1)2r − 1

(s + 1)2r − s2r

)1/2

, x̂s+1 =
( 1 − δ2s2r

(s + 1)2r − s2r

)1/2

,

x̂(t) = x̂se
ist + x̂s+1e

i(s+1)t.

We have

‖x̂(r)‖2 = s2r|x̂s|
2 + (s + 1)2r|x̂s+1|

2 = 1,

‖I2x̂‖
2
l2N+1
2

= |x̂s|
2 + |x̂s+1|

2 = δ2.

Moreover,

‖I0x̂‖
2 = ‖x̂(k)‖2 = s2k|x̂s|

2 + (s + 1)2k|x̂s+1|
2 = λ1 + λ2δ

2.

In Case ii), we put

x̂s0 = δ, x̂N+1 =

√
1 − δ2s2r

0

(N + 1)r
, x̂(t) = x̂s0e

is0t + x̂N+1e
i(N+1)t.

We have

‖x̂(r)‖2 = s2r
0 |x̂s0 |

2 + (N + 1)2r|x̂N+1|
2 = 1, ‖I2x̂‖

2
l2N+1
2

= |x̂s0 |
2 = δ2,

and

‖I0x̂‖
2 = ‖x̂(k)‖2 = s2k

0 |x̂s0 |
2 + (N + 1)2k|x̂N+1|

2 = λ1 + λ2δ
2.

In Case iii), we consider x̂(t) = eit. Then,

‖x̂(r)‖ = 1, ‖I2x̂‖L2
2N+1

=

{
1, N > 0,

0, N = 0,

and

‖I0x̂‖
2 = ‖x̂(k)‖2 = 1 = λ1 + λ2δ

2.
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Now, to apply Theorem 8, we will construct the operators S1 and S2. Let u ∈  L2(T),

u(t) =

+∞∑

j=−∞

uje
ijt,

and v = (v−N , · · · , vN ) ∈ L2
2N+1. We will search the operators S1 and S2 in the forms

S1u =

+∞∑

j=−∞
j 6=0

βjuje
ijt, S2v =

∑

|j|6N

(ij)kαjvje
ijt.

From condition (a) of Theorem 8, we obtain

βj =

{
(ij)k−r(1 − αj), 0 < |j| 6 N,

(ij)k−r, |j| > N.

First, we consider Case iii) (λ1 = 1, λ2 = 0). Put αj = 0 for all j = −N, · · · , N . Then,

by virtue of the Parseval equality, we have

‖S1u + S2v‖
2 = ‖S1u‖

2 =

+∞∑

j=−∞
j 6=0

j2(k−r)|uj |
2

6

+∞∑

j=−∞
j 6=0

|uj|
2

6 ‖u‖2 = λ1‖u‖
2 + λ2‖v‖

2
l2N+1
2

.

Now, consider Cases i) and ii), we have

‖S1u + S2v‖
2 =

∑

0<|j|6N

|βjuj + (ij)kαjvj |
2 +

∑

|j|>N

|βj |
2|uj |

2. (26)

Using the Cauchy-Schwarz inequality, we obtain

|βjuj + (ij)kαjvj |
2

6 Aj(λ1|uj|
2 + λ2|vj |

2), (27)

where

Aj =
|βj |

2

λ1
+

j2k|αj |
2

λ2
=

|1 − αj |
2

j2(r−k)λ1
+

j2k|αj |
2

λ2
.

Assume that we find αj such that Aj 6 1 for all 0 < |j| 6 N . Then, from (26), (27),

taking into account that λ1 > (N + 1)−2(r−k), we obtain

‖S1u + S2v‖
2

6 λ1

∑

0<|j|6N

|uj|
2 +

∑

|j|>N

j2(k−r)|uj |
2 + λ2

∑

|j|6N

|vj |
2

6 λ1

+∞∑

j=−∞

|uj|
2 + λ2

∑

|j|6N

|vj |
2 = λ1‖u‖

2 + λ2‖v‖
2
l2N+1
2

.

It remains to show that there exist αj such that

|1 − αj |
2

j2(r−k)λ1
+

j2k|αj |
2

λ2
6 1 (28)
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for all 0 < |j| 6 N . This inequality may be rewritten in the form

∣∣∣αj −
λ2

λ2 + λ1j2r

∣∣∣
2

6
λ1λ2j

2(r−k)(λ2 + λ1j
2r − j2k)

(λ2 + λ1j2r)2
. (29)

It suffices to prove that

λ2 + λ1j
2r − j2k

> 0 (30)

for all j = 1, · · · , N . Consider the set of points on the plane R2,

{
xj = j2r,

yj = j2k,
j = 0, 1, · · · . (31)

If we plot the function

{
x = t2r,

y = t2k,
t ∈ [0, +∞), (32)

then the points (31) belong to the plot of this function. The function defined by (32) can

be written in the form

y = xk/r , 0 <
k

r
< 1.

It is a concave function. In Case i), the line y = λ2 +λ1x passes through the points (s2r, s2k)

and ((s + 1)2r, (s + 1)2k)). In view of concavity, the inequality (30) holds for all j > 0.

In Case ii), the line y = λ2 + λ1x passes through the point (s2r
0 , s2k

0 ) and

(s0 + 1)2k − s2k
0

(s0 + 1)2r − s2r
0

6 λ1.

It means that the inequality (30) holds for all j > s0. On the other hand, in view of definition

of s0,

s2k
0 − (s0 − 1)2k

s2r
0 − (s0 − 1)2r

> λ1.

Consequently, the inequality (30) holds for all 0 6 j 6 s0.

Now, it remains to note that the set of all αj satisfying (29) may be written in the form

(25) with |θj | 6 1.

Among the family of optimal methods (24), we find the ones that use minimal infor-

mation about the input data. If in (24) αj = 0 for some j, then the information about x̃j

is not used. Thus, we would like to find all such j. It follows from (28) that if αj = 0, then

|j| > λ
1

2(k−r)

1 . It is interesting to find also those j for which αj = 1 (that is, for such j, we

do not smooth the information). From (28), we see that we may take αj = 1 for |j| 6 λ
1
2k
2 .

Thus, we obtain the following result.
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Corollary 2 If s0 > 0 and δ < 1, then for all θj , |θj | 6 1, 0 < |j| 6 N , the methods

ϕ̂(x̃)(t) =
∑

0<|j|6λ
1
2k
2

(ij)kx̃je
ijt +

∑

λ
1
2k
2 <|j|<λ

1
2(k−r)
1

(ij)kαj x̃je
ijt,

where αj are defined by (25), are optimal.

More results on optimal recovery of functions and their derivatives in the periodic case

and in the case when functions defined on the real line may be found in [20]∼[24].
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