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The well-known Hadamard three-circle theorem states that if f(z) is
a holomorphic function on the annulus r1 ≤ |z| ≤ r2 and

M(r) = max
|z|=r

|f(z)|,

then

M(ρ) ≤ M(r1)
log r2/r
log r2/r1 M(r2)

log r/r1
log r2/r1

for any three concentric circles of radii r1 < ρ < r2.
For functions f from the Hardy space H2(Bn) we consider the anal-

ogous extremal problem

‖f(ρz)‖H2(Bn) → max, ‖f(r1z)‖H2(Bn) ≤ δ1, ‖f(r2z)‖H2(Bn) ≤ δ2.

This problem is closely connected with the problem of optimal recovery
of f on the sphere of radius ρ from the information about traces on the
spheres of radii r1 and r2 given with errors. The optimal error of such
recovery is defined as follows

Eρ(r1, r2, δ1, δ2)

= inf
m

sup
f∈H2(Bn), yj∈L2(σrj ), j=1,2

‖f(rjz)−yj(rjz)‖L2(σ)≤δj , j=1,2

‖f(ρz)−m(y1, y2)(ρz)‖L2(σ),

where the lower bound is taken over all maps (methods) m : L2(σr1)×
L2(σr2) → L2(σρ) and dσr(z) are the positive normalized rotationally
invariant measures on the spheres rSn−1 (σ = σ1). Any method m̂ for
which the lower bound is attained is called an optimal recovery method.
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and (λ1, λ2) = (0, 1), if δ1 ≥ δ2.

Theorem 1 ([1]). The error of optimal recovery is given by

Eρ(r1, r2, δ1, δ2) =
√

λ1δ2
1 + λ2δ2
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and the method

m̂(y1, y2)(z) =
∞∑

k=0

1
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where

c(j)
α =

(n + |α| − 1)!

n!α!

∫

Sn−1

yj(rjz)zα dσ(z), j = 1, 2,

is optimal.

It appears that it is possible to construct a collection of optimal
recovery methods.

Theorem 2. For all βk, k = 0, 1, . . ., such that
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are optimal.

Assume that δ1 < δ2. Let K1 = max{ k ∈ Z+ : ρ2k ≤ λ1r
2k
1 },

K2 = min{ k ∈ Z+ : ρ2k ≤ λ2r
2k
2 }.

From Theorem 2 we have

Corollary 1. For all 0 ≤ k1 ≤ K1, k2 ≥ K2 and βk, k = k1 +
1, . . . , k2 − 1, such that (1) holds all methods
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are optimal.
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