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1. Introduction

What does it mean to solve a problem in an optimal way?
Assume that we have a problem p to be solved. Usually we have
some information abut this problem. This information as a rule is
incomplete and/or inaccurate. We denote it by I(p). Suppose we have
a method (algorithm) m to solve this problem. The method m uses
the information I(p). To compare the quality of di�erent methods with
each method m we have to associate a number indicating the error of
the solution of the problem. We denote this number by e(p, I,m).
Usually we want to have a method that can be applied to several

problems of the same type. Assume that we have a set of problems P .
Then for the set P the error of the given method m may be de�ned as
follows

e(P , I,m) = sup
p∈P

e(p, I,m).

If we want to �nd a good method for problems P we have to �nd a
method for which the value e(P , I,m) as small as possible. Denote by
M the set of admissible methods. Then we want to �nd a method m̂
such that

e(P , I, m̂) = inf
m∈M

e(P , I,m) =: E(P , I,M).

We call the method m̂ an optimal method and the value E(P , I,M) is
called an optimal error.
It may appears that E(P , I,M) is not su�ciently small. Then we

may try to �nd another type of information about problems from P
that can provide a better error of solutions. In other words, we can
consider the following problem

inf
I∈I

E(P , I,M),

where I is some set of information.
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Let us consider some examples.

2. Optimal interpolation

Let W be some class of functions de�ned on a domain D. Denote by
pf the problem of �nding f(t), t ∈ D, for a function f ∈ W . Put

I(pf ) = I(f) = (f(t1), . . . , f(tn)), tj ∈ D, j = 1, . . . , n.

Let M be the set of all mappings m : Rn → R. We put

e(pf , I,m) = |f(t)−m(I(f))|.

Here P = {pf : f ∈ W}. Thus,

e(P , I,m) = sup
f∈W

|f(t)−m(I(f))| =: e(t,W, I,m).

To �nd an optimal method we have to consider the following problem

E(t,W, I,M) = inf
m : Rn→R

e(t,W, I,m).

This problem is called the problem of optimal recovery of a function
f ∈ W at a �xed point t from the information about the values
f(t1), . . . , f(tn).

3. Optimal integration

Let pf be the problem of �nding the integral

Lf =

∫ b

a

f(t) dt

for a function f ∈ W . With the same I(f), P , and M we obtain the
problem of optimal integration on the class W from the information
about values of f at a �xed system of nodes

E(L,W, I,M) = inf
m : Rn→R

sup
f∈W

∣∣∣∣∫ b

a

f(t) dt−m(I(f))

∣∣∣∣ .
Note that if instead of M we consider the set M0 containing only

linear functions m, that is,

m(I(f)) =
n∑

j=1

ajf(tj), aj ∈ R, j = 1, . . . , n,

then we obtain the well-known problem of �nding optimal quadrature
formula for the class W and a �xed system of nodes.
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One may ask how to choose such points a ≤ t1 < . . . < tn ≤ b for
which the optimal error will be minimal. In this case we obtain the
following problem

E(L,W, I,M) = inf
I∈I

E(L,W, I,M),

where

I = { I : a ≤ t1 < . . . < tn ≤ b }.

4. Optimal numerical differentiation

In notation of the �rst example this is the following problem

E ′(t,W, I,M) = inf
m : Rn→R

sup
f∈W

|f ′(t)−m(I(f))|.

5. Optimal interpolation for W 1
∞

We consider complete solutions of some previous problems for simple
classes.
Denote by W 1

∞ the class of real functions f de�ned on the interval
[−1, 1], absolutely continuous, and satisfying the condition

|f ′(t)| ≤ 1 almost everywhere on [−1, 1].

Following the �rst example we put

e(t,W 1
∞, It̄,m) = sup

f∈W 1
∞

|f(t)−m(It̄(f))|,

E(t,W 1
∞, It̄) = inf

m : Rn→R
e(t,W 1

∞, It̄,m),

It̄(f) = (f(t1), . . . , f(tn)), t̄ = (t1, . . . , tn), −1 ≤ t1 < . . . < tn ≤ 1.

Denote by α(t) the nearest point to t from the set of nodes
{t1, . . . , tn} (in the case when t is in the middle between tj and tj+1 we
set for de�niteness α(t) = tj). Thus,

α(t) =


t1, −1 ≤ t ≤ t1 + t2

2
,

tj,
tj−1 + tj

2
< t ≤ tj + tj+1

2
, j = 2, . . . , n− 1,

tn,
tn−1 + tn

2
< t ≤ 1.

Put

f̂(t) = |t− α(t)|
(see Fig. 1).
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Ðèñ. 1. 1

It is obvious that f̂ ∈ W 1
∞ and −f̂ ∈ W 1

∞. Moreover, It̄(f̂) =

It̄(−f̂) = 0. For any method m we have

2f̂(t) = |f̂(t)−m(0)− (−f̂(t)−m(0))|

≤ |f̂(t)−m(0)|+ | − f̂(t)−m(0)| ≤ 2e(t,W 1
∞, It̄,m).

Consequently, for all m

e(t,W 1
∞, It̄,m) ≥ f̂(t).

Hence

(1) E(t,W 1
∞, It̄) ≥ f̂(t).

We obtain the lower bound. Now let us obtain the upper bound.
De�ne the method m̂ by the equality

m̂(It̄(f)) = f(α(t)).

Then

f(t)− f(α(t)) =

∫ t

α(t)

f ′(τ) dτ.

Since |f ′(τ)| ≤ 1 we have

|f(t)− f(α(t))| ≤ |t− α(t)| = f̂(t).

Thus, for all f ∈ W 1
∞

|f(t)− m̂(It̄(f))| ≤ f̂(t).

We have

E(t,W 1
∞, It̄) ≤ e(t,W 1

∞, It̄, m̂) ≤ f̂(t).

Taking into account the lower bound (1), we obtain that

E(t,W 1
∞, It̄) = f̂(t)
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and m̂ ia an optimal method. Consequently, if we have function values
f(t1), . . . , f(tn), then an optimal method of recovery of f(t) on the class
W 1

∞ is the following

f(t) ≈ f(α(t))

(see Fig. 2).
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There may be several optimal methods. Among them there is one
which has good properties. It is called the central method. We construct
the central method for the above problem. Let y = (y1, . . . , yn) ∈ Rn.
Put

Wy = { f ∈ W 1
∞ : It̄f = y }.

Consider the set

Ay = { f(t) : f ∈ Wy }.
For the �xed t the set Ay is an interval on R and

cy =
supf∈Wy

f(t) + inff∈Wy f(t)

2

is the middle of it.
For any y, such that Wy ̸= ∅ and for all f ∈ Wy we have

inf
c∈R

sup
f∈Wy

|f(t)− c| = sup
f∈Wy

|f(t)− cy|.

Thus for any method m and for any y, Wy ̸= ∅,

sup
f∈Wy

|f(t)−m(y)| ≥ sup
f∈Wy

|f(t)− cy|.

Consequently, the method m̂c(It̄f) = cIt̄f is the optimal method which
is the best for any �xed information It̄f . Such methods are called
central methods.
The explicit form for the method m̂c may be found using the

following picture
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m̂c(It̄f)(t) =



y1, −1 ≤ t ≤ t1,

yj, tj ≤ t ≤ t∗j ,

j = 1, . . . , n− 1,
yj + yj+1

2

+ sign(yj+1 − yj)

(
t− tj + tj+1

2

)
, t∗j ≤ t ≤ t∗∗j ,

j = 1, . . . , n− 1,

yj+1, t∗∗j ≤ t < tj+1,

j = 1, . . . , n− 1,

yn, tn ≤ t ≤ 1.

t∗j =
tj + tj+1

2
− |yj+1 − yj|

2
, t∗∗j =

tj + tj+1

2
+

|yj+1 − yj|
2

.

6. Optimal recovery of the minimum

Now for the same class W 1
∞ and the same information It̄ we consider

the problem of optimal recovery of the (nonlinear!) functional

Lf = min
t∈[−1,1]

f(t).

The error of any method m : Rn → R is

e(L,W 1
∞, It̄,m) = sup

f∈W 1
∞

|Lf −m(It̄f)| ,
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The problem is to �nd

E(L,W 1
∞, It̄) = inf

m : Rn→R
e(L,W 1

∞, It̄,m)

and an optimal recovery method.
We construct the central method in this problem. For the �xed y ∈

Rn we again deal with the set Wy = {f ∈ W 1
∞ : It̄f = y} ̸= ∅.

All functions from Wy are between two piecewise linear functions. The
upper function we denote by Zy(t) and the lower function by zy(t).

-
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Zy(t)

zy(t)

zy(t)

zy(t)

yj+1

Thus for all f ∈ Wy

min
t∈[−1,1]

Zy(t) ≤ min
t∈[−1,1]

f(t) ≤ min
t∈[−1,1]

zy(t).

It is clear that

min
t∈[−1,1]

Zy(t) = min
1≤j≤n

yj.

It may be shown that

min
t∈[tj ,tj+1]

zy(t) =
yj+1 + yj

2
− tj+1 − tj

2
.

Taking into account intervals [−1, t1] and [tn, 1] we obtain

min
t∈[−1,1]

zy(t)

= min

{
y1 − h0,

y2 + y1
2

− h1/2, . . . ,
yn + yn−1

2
− hn−1/2, yn − hn

}
,

where h0 = t1 + 1, hj = tj+1 − tj, j = 1, . . . , n− 1, hn = 1− tn.
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Thus the method

m̂L(It̄f) =
1

2

(
min

t∈[−1,1]
Zy(t) + min

t∈[−1,1]
zy(t)

)
=

1

2
min
1≤j≤n

yj

+
1

2
min

{
y1 − h0,

y2 + y1
2

− h1/2, . . . ,
yn + yn−1

2
− hn−1/2, yn − hn

}
is the central method for recovery of minimum. It may be shown that

E(L,W 1
∞, It̄) =

1

2
min {h0, h1/2, . . . , hn−1/2, hn} .

For the equidistant system of points

t̂j = −1 +
2j − 1

n
, j = 1, . . . , n,

We have

m̂L(It̄f)

=
1

2
min
1≤j≤n

yj +
1

2
min

{
y1,

y2 + y1
2

, . . . ,
yn + yn−1

2
, yn

}
− 1

2n
.

7. Optimal recovery from Fourier coefficients

Let f be a periodic function on T = [−π, π] and the Fourier series

f(t) =
a0
2

+
∞∑
k=1

(ak cos kt+ bk sin kt),

where

ak =
1

π

∫
T
f(t) cos kt dt, k = 0, 1, 2, . . . ,

bk =
1

π

∫
T
f(t) sin kt dt, k = 1, 2, . . . ,

converges uniformly to f .
Suppose that instead of precise values of the Fourier coe�cients of

f we know their inaccurate values ãk, b̃k such that

(a0 − ã0)
2

2
+

∞∑
k=1

((ak − ãk)
2 + (bk − b̃k)

2) ≤ δ2,

where δ > 0. The problem is to recover f at some point τ .
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We cannot take as approximation the series

ã0
2

+
∞∑
k=1

(ãk cos kτ + b̃k sin kτ)

since it may di�er from f(τ) as much as desired or even be
nonconvergent.
A. N. Tikhonov proposed to take the following series

f̃(t) =
ã0
2

+
∞∑
k=1

1

1 + αk2
(ãk cos kτ + b̃k sin kτ),

where α has the same order of smallness as δ (in particular, it is possible
to put α = δ). He proved that if f ∈ L2(T) and f is continuous at τ ,

then f̃(τ) → f(τ) as δ → 0.
L2(T) is the linear space of functions for which∫

T
|f(t)|2 dt < ∞.

This method are known as Tikhonov regularization.
There are several questions to this method.
1. Are there any better method? How to compare various methods?
2. What is the error of approximation when δ is �xed?

3. Do we need to know all inaccurate values ãk and b̃k?
We try to answer these questions and construct a family of

optimal methods for this problem. We call the approach that we use
Kolmogorov regularization since it based on ideas of A. N. Kolmogorov.
We begin with the setting of the problem in terms of optimal recovery

theory.
Let Wn

2 (T) be the space of 2π-periodic functions with absolutely
continuous x(n−1) and x(n) ∈ L2(T). Set

W n
2 (T) = {x ∈ Wn

2 (T) : ∥x(n)∥L2(T) ≤ 1.

Suppose that for every x ∈ W n
2 (T) we know the Fourier coe�cients

aj(x) =
1

π

∫
T
x(t) cos jt dt, j = 0, 1, 2, . . . ,

bj(x) =
1

π

∫
T
x(t) sin jt dt, j = 1, 2, . . . ,

given inaccurately.
Suppose that we know

y = (ã0, ã1, b̃1 . . .)
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such that

∥Ix− y∥l2 ≤ δ,

where

Ix = (a0(x), a1(x), b1(x), . . .).

Here the norm in l2 is de�ned by the inner product

⟨u, v⟩l2 =
a0c0
2

+
n∑

k=1

(akck + bkdk), u = (a0, a1, b1, . . .),

v = (c0, d1, c1, . . .).

Using this information we would like to �nd the best method of
recovery of x(τ) at some point τ ∈ T. For every method of recovery
m : l2 → R we de�ne the error of the method by

e(W n
2 (T), I, δ,m) = sup

x∈Wn
2 (T), y∈l2

∥Ix−y∥l2≤δ

|x(τ)−m(y)|.

We are interested in the optimal error of recovery

E(W n
2 (T), I, δ) = inf

m : l2→R
e(W n

2 (T), I, δ,m),

and the method for which this value ia attained.
Let a be the solution of the equation

1

2
+
∑∞

k=1

1

(1 + ak2n)2∑∞
k=1

k2n

(1 + ak2n)2

= δ2

(it may be shown that for every δ > 0 there exists the unique solution
of this equation).

Òåîðåìà 1. The method

m̂(y) =
ã0
2

+
∞∑
k=1

1

1 + ak2n
(ãk cos kτ + b̃k sin kτ)

is optimal and

E(W n
2 (T), I, δ) = λ1(a+ δ2),

where

λ1 =

( ∞∑
k=1

k2n

(1 + ak2n)2

)1/2

.
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8. Optimal recovery by finite number of Fourier

coefficients

We begin with the case when we know exact values of Fourier
coe�cients. Let A ⊂ Z+ = {0, 1, 2, . . .} and B ⊂ N = {1, 2, . . .} be
�nite sets and for every x ∈ W n

2 (T) we know the Fourier coe�cients
{ak}k∈A and {bk}k∈B. That is for every x we know the vector FA,Bx =
({ak}k∈A, {bk}b∈B) from RN , N = cardA+ cardB.
Using the information FA,Bx we want to �nd a function which

approximate x(r), 0 ≤ r ≤ n − 1, in L2(T) in the best way. Now the
error of method m : RN → L2(T) is de�ned as follows

er(W
n
2 (T), FA,B,m) = sup

x∈Wn
2 (T)

∥x(r) −m(FA,Bx)∥L2(T).

The error of optimal recovery is de�ned by

Er(W
n
2 (T), FA,B) = inf

m : RN→L2(T)
er(W

n
2 (T), FA,B,m).

Since for every c ∈ R x = c ∈ W n
2 (T), it is easy to show that in the

case when 0 /∈ A E0(W
n
2 (T), FA,B) = ∞.

Put

k0 = k0(A,B) = min{ min
k∈N\A

k, min
k∈N\B

k }.

It means that {0, 1, . . . , k0 − 1} ∈ A, {1, . . . , k0 − 1} ∈ B, and k0 /∈ A
or k0 /∈ B.
Put χ0 = 1 and χr = 0 for r ≥ 1.

Òåîðåìà 2. Let 1 ≤ r ≤ n − 1 or r = 0 and 0 ∈ A. Then

Er(W
n
2 (T), FA,B) = k

−(n−r)
0 and for all α = {αk}k∈A and β = {βk}k∈B

such that

|αk − 1| ≤
(

k

k0

)n−r

, k ∈ A, |βk − 1| ≤
(

k

k0

)n−r

, k ∈ B,

the method

m̂(FA,Bx)(t) =
a0
2
χr +

∑
k∈A\{0}

krαkak cos(kt+ πr/2)

+
∑
k∈B

krβkbk sin(kt+ πr/2)

is optimal
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Let us consider the case when r = 0. Note that we may take as an
optimal method the method

m̂(FA,Bx)(t) =
a0
2

+
∑

k∈A\{0}

ak cos kt+
∑
k∈B

bk sin kt.

But the method

m̂(FA,Bx)(t) =
a0
2

+

k0−1∑
k=1

(ak cos kt+ bk sin kt)

is also optimal and it does not use coe�cients ak and bk if k ≥ k0.

9. Optimal recovery by finite number of inaccurate

Fourier coefficients

Now we consider the case when for every x ∈ W n
2 (T) we know y ∈

RN such that ∥FA,Bx − y∥∞ ≤ δ, where ∥y∥∞ = max0≤j≤N−1 |yj|,
y = (y0, y1, . . . , yN−1).
It means that instead of exact values of Fourier coe�cients we know

{ãk}k∈A and {b̃k}k∈B such that

|ak − ãk| ≤ δ, k ∈ A, |bk − b̃k| ≤ δ, k ∈ B.

Again we want to recover x(r) in L2(T)-metric.
Here we de�ne the error of m by

er(W
n
2 (T), FA,B, δ,m) = sup

x∈Wn
2 (T), y∈lN∞

∥FA,Bx−y∥∞≤δ

∥x(r) −m(y)∥L2(T).

The error of optimal recovery is

Er(W
n
2 (T), FA,B, δ) = inf

m : lN∞→L2(T)
er(W

n
2 (T), FA,B, δ,m).

Set

p̂ = max

{
p ∈ Z+ : 2δ2

p∑
k=0

k2n < 1

}
, p0 = min{p̂, k0 − 1}.

Òåîðåìà 3. If 1 ≤ r ≤ n− 1 or r = 0 and 0 ∈ A, then

Er(W
n
2 (T), FA,B, δ)

=

√√√√ 1

(p0 + 1)2(n−r)
+

δ2

2
χr + 2δ2

p0∑
k=1

k2r

(
1−

(
k

p0 + 1

)2(n−r)
)
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and the method m̂({ãk}k∈A, {b̃k}k∈B)(t) =
ã0
2
χr

+

p0∑
k=1

(
1−

(
k

p0 + 1

)2(n−r)
)

× kr(ãk cos(kt+ πr/2) + b̃k sin(kt+ πr/2)) is optimal.

10. Hadamard three-circle theorem and inequalities for

derivatives

We begin with one extremal problem which is known as the
Hadamard three-circle theorem. Let f(z) be a holomorphic function
on the annulus

r1 ≤ |z| ≤ r2.

Put

M(r) = max
|z|=r

|f(z)|.

Then logM(r) is a convex function of the log r. The conclusion of the
theorem can be restated as

M(r) ≤ M(r1)
log r2/r
log r2/r1M(r2)

log r/r1
log r2/r1 .

for any three concentric circles of radii r1 < r < r2.
The history of this theorem is the following. A statement and proof

for the theorem was given by J.E. Littlewood in 1912, but he attributes
it to no one in particular, stating it as a known theorem. H. Bohr and
E. Landau claim the theorem was �rst given by J. Hadamard in 1896,
although Hadamard had published no proof.
The Hadamard three-circle theorem gives an estimate in the

following extremal problem

M(r) → max, M(r1) ≤ δ1, M(r2) ≤ δ2.

The exact solution of this problem which is expressed in terms of elliptic
functions was given by R. M. Robinson in 1943.
In 1913 E. Landau considered a very similar problem. He took

derivatives instead of circles. He proved that for all functions x ∈
L∞(R+) with the �rst derivative locally absolutely continuous on R+

and x′′ ∈ L∞(R+) the following exact inequality

∥x′∥L∞(R+) ≤ 2∥x∥1/2L∞(R+)∥x
′′∥1/2L∞(R+)

holds (the exactness means that the constant 2 could not be replaced
by some other constant which is less than 2). That is he found the
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exact solution of the extremal problem

∥x′∥L∞(R+) → max, ∥x∥L∞(R+) ≤ δ1, ∥x′′∥L∞(R+) ≤ δ2.

Then in 1914 Hadamard solved the analogous problem for R.
In 1939 A. N. Kolmogorov obtained the general result in this �eld.

He found the exact solution of the problem

∥x(k)∥L∞(R) → max, ∥x∥L∞(R) ≤ δ1, ∥x(r)∥L∞(R) ≤ δ2.

The value of this problem is

Kr−k

K
1− k

r
r

δ
1−k/r
1 δ

k/r
2 ,

where

Km =
4

π

∞∑
s=0

(−1)s(m+1)

(2s+ 1)m+1

are the Favard constants.
These types of extremal problems are known as Landau�Kolmogorov

inequalities for derivatives and they all are similar to the initial
extremal problem formulated by Hadamard.

11. Hardy�Littlewood�P�olya inequality and optimal

recovery of derivatives

One more example of Landau�Kolmogorov type inequalities is the
Hardy�Littlewood�P�olya inequality.
In 1939 Hardy, Littlewood, and P�olya proved that for all integer

0 < k < r and all x ∈ L2(R) ∩W r
2 (R)

∥x(k)∥L2(R) ≤ ∥x∥1−
k
r

L2(R)∥x
(r)∥

k
r

L2(R),

This result may be formulated in the same form as Hadamard's
theorem.

Òåîðåìà 4. log ∥x(k)∥L2(R) is a convex function of k.

It is possible to de�ne fractional derivatives then k will be continuous
argument.
We may consider more than three circles in Hadamar's theorem and

more than three derivatives in the Hardy�Littlewood�P�olya inequality.
The more values of convex function we know the more precise we can
estimate the function.
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Let k1 < . . . < kn and k1 ≤ k ≤ kn. Consider the following extremal
problem

∥x(k)∥L2(R) → max, ∥x(kj)∥L2(R) ≤ δj, j = 1, . . . , n,

x ∈ Wkn
2 (R).

Let

M = co{ (kj, log δj), j = 1, . . . , n }.
be a set in R2 Put

θ(x) = min{ y : (x, y) ∈ M }.

0
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6
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Òåîðåìà 5.

sup
x∈Wkn

2 (R)
∥x(kj)∥L2(R)≤δj , j=1,...,n

∥x(k)∥L2(R) = eθ(k).

12. Optimal recover of derivatives

Suppose that we know functions y1, . . . , yn ∈ L2(R) such that

∥x(kj) − yj∥L2(R) ≤ δj, j = 1, . . . , n.

We want to recover x(k).
Any recovery method is a map m : (L2(R))n → L2(R).



16 K. YU. OSIPENKO

The error of method m is de�ned as

e(Dk, K, δ,m) = sup
x∈Wkn

2 (R)
∥x(kj)−yj∥L2(R)≤δj , j=1,...,n

∥x(k) −m(y)∥L2(R),

here K = (k1, . . . , kn), δ = (δ1, . . . , δn) and y = (y1, . . . , yn).
The error of optimal recovery is de�ned by

E(Dk, K, δ) = inf
m : (L2(R))n→L2(R)

e(Dk, K, δ,m).

The method for which the lower bound is attained is called optimal
method of recovery.
Let kj1 , . . . , kjr be the points of break of polygonal line θ. Denote by

Fx the Fourier transform of x.

Òåîðåìà 6. For all k1 ≤ k ≤ kn

E(Dk, K, δ) = eθ(k).

If kjs < k < kjs+1, 1 ≤ s ≤ r − 1, Then the metod m̂(y) = (Ls ∗ yjs) +
(Rs+1 ∗ yjs+1), where

FLs(τ) = (iτ)k
(kjs+1 − k)δ2js+1

(−iτ)kjs

(kjs+1 − k)δ2js+1
τ 2kjs + (k − kjs)δ

2
js
τ 2kjs+1

,

FRs+1(τ) = (iτ)k
(k − kjs)δ

2
js(−iτ)kjs+1

(kjs+1 − k)δ2js+1
τ 2kjs + (k − kjs)δ

2
js
τ 2kjs+1

,

is optimal. For k = kjs, 1 ≤ s ≤ r−1, the metod m̂(y) = yjs is optimal.

13. Analog of the Hadamard theorem for the heat

equation

For the heat equation we will consider the problem which is analogous
to the Hadamard three-circle theorem.
Let u be the solution of the heat equation in Rd

ut = ∆u,

u∣∣t=0
= f(x), f ∈ L2(Rd).

Òåîðåìà 7. Let u(t, x) be the solution of the heat equation. Then

log ∥u(t, ·)∥L2(Rd) is a convex function of t.

In other words, for all t1 < τ < t2

∥u(τ, ·)∥L2(Rd) ≤ ∥u(t1, ·)∥
t2−τ
t2−t1

L2(Rd)
∥u(t2, ·)∥

τ−t1
t2−t1

L2(Rd)
.
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Now we consider the similar problem with n + 1 �circles�. Namely,
we want to solve the following extremal problem

∥u(τ, ·)∥L2(Rd) → max, ∥u(tj, ·)∥L2(Rd) ≤ δj, j = 1, 2, . . . , n,

f ∈ L2(Rd),

where 0 ≤ t1 < . . . < tn and δj > 0, j = 1, 2, . . . , n.
To formulate the result we consider the set

M = co{ (tj, log δj), 1 ≤ j ≤ n }+ { (t, 0) | t ≥ 0 },

where coA is a convex hull of A. De�ne the function θ(t), t ∈ [t1,∞)
as follows

θ(t) = min{ y : (t, y) ∈ M }.

It is clear that θ is a polygonal line on [t1,∞).
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Òåîðåìà 8. For all τ ≥ t1

sup
f∈L2(Rd)

∥u(tj ,·)∥L2(Rd)
≤δj , j=1,2,...,n

∥u(τ, ·)∥L2(Rd) = eθ(τ).
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14. Optimal recovery of the solution of the heat

equation

The considered extremal problem is closely connected with the
problem of optimal recovery of the solution of the heat equation from
inaccurate observations of the solution at time moments t1, . . . , tn.
Assume that we know functions yj ∈ L2(Rd), j = 1, . . . , n, such that

∥u(tj, ·)− yj(·)∥L2(Rd) ≤ δj, j = 1, . . . , n.

What is the best way to use this information to recover the
temperature distribution at the time τ ̸= tj, 1 ≤ j ≤ n, that is to
recover the function u(τ, ·)?
We admit as recovery methods arbitrary maps m : (L2(Rd))n →

L2(Rd). For a �xed method m the quantity

eτ (L2(Rd), δ,m)

= sup
f,y1,...,yn∈L2(Rd)

∥u(tj ,·)−yj(·)∥L2(Rd)
≤δj , j=1,...,n

∥u(τ, ·)−m(y)(·)∥L2(Rd),

where u is the solution of the heat equation with the initial function f ,
δ = (δ1, . . . , δn), and y = (y1, . . . , yn), is called the error of the method
m.
We are interested in the value

Eτ (L2(Rd), δ) = inf
m : (L2(Rd))n→L2(Rd)

eτ (L2(Rd), δ,m),

which is called the error of optimal recovery and in the method m̂, for
which the in�num is attained that is in the method m̂ for which

Eτ (L2(Rd), δ) = eτ (L2(Rd), δ, m̂).

We call this method the optimal recovery method.
Let tsj , j = 1, . . . , r, be points of break of θ. For τ ∈ (tsj , tsj+1

) put

λsj =
tsj+1

− τ

tsj+1
− tsj

(
δsj+1

δsj

) 2(τ−tsj )

tsj+1−tsj

,

λsj+1
=

τ − tsj
tsj+1

− tsj

(
δsj
δsj+1

) 2(tsj+1−τ)

tsj+1−tsj

.

Òåîðåìà 9. For all τ ≥ t1 Eτ (L2(Rd), δ) = eθ(τ). If τ ∈ (tsj , tsj+1
),

then for all γj such that

λsj+1
|γj(ξ)|2e2|ξ|

2(tsj−τ) + λsj |1− γj(ξ)|2e2|ξ|
2(tsj+1−τ) ≤ λsjλsj+1

,
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all methods

m(y)(t) = (Kj ∗ ysj)(t) + (Lj+1 ∗ ysj+1
)(t),

where

FKj(ξ) = γj(ξ)e
|ξ|2(tsj−τ), FLj+1(ξ) = (1− γj(ξ))e

|ξ|2(tsj+1−τ),

are optimal. For τ = tsj , j = 1, . . . , r, methods m(y)(t) = ysj(t) are

optimal and for τ > tsr the method

m(y) = F−1(e−|ξ|2(τ−tsr )Fysr(ξ))(x)

is optimal.

The condition

λsj+1
|γj(ξ)|2e2|ξ|

2(tsj−τ) + λsj |1− γj(ξ)|2e2|ξ|
2(tsj+1−τ) ≤ λsjλsj+1

may be rewritten in the form∣∣∣∣γj(ξ)− µ1

µ1 + µ2

∣∣∣∣ ≤ √
µ1µ2

√
µ1 + µ2 − 1

µ1 + µ2

,

where

µ1 = λsje
−2|ξ|2(tsj−τ), µ2 = λsj+1

e−2|ξ|2(tsj+1−τ).

It can be shown that µ1 + µ2 ≥ 1 for all ξ ∈ Rd. Thus, γj(ξ) may be
chosen from the interval[

µ1

µ1 + µ2

−
√
µ1µ2

√
µ1 + µ2 − 1

µ1 + µ2

,
µ1

µ1 + µ2

+

√
µ1µ2

√
µ1 + µ2 − 1

µ1 + µ2

]
.

Note that optimal method of recovery uses not more than two
observations. To �nd these observation we have to construct the set
M and the polygonal line θ. Then we have to �nd the nearest points
of break of θ to the point τ . The observations at these points are those
that use in optimal method of recovery.
Note also that we can make more precise points of observation which

are not on the polygonal line. Suppose that for some tm, tsj < tm < tsj+1

and

θ(tm) < log δm.

Then optimal recovery method gives the error less than δm. Indeed

∥u(tm, ·)− m̂(y)(·)∥L2(Rd) ≤ eθ(tm) < δm.
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15. Optimal recovery of signals

The Hardy�Littlewood�P�olya inequality may be considered as the
solution of the following extremal problem

∥x(k)∥L2(R) → max, ∥x∥L2(R) ≤ δ1, ∥x(n)∥L2(R) ≤ δ2.

We will consider a slightly di�erent extremal problem which closely
connected with problems of signal reconstruction

∥x(k)∥L2(R) → max, ∥Fx∥L2(∆σ) ≤ δ, ∥x(n)∥L2(R) ≤ 1,

where Fx is the Fourier transform of x and ∆σ = [−σ, σ], σ > 0.
We consider the problem of optimal recovery of x(k) knowing the

Fourier transform of x giving with some error on ∆σ.
We assume that x ∈ W n

2 (R),

W n
2 (R) = {x ∈ L2(R) : x(n−1) is loc. abs. cont. , ∥x(n)∥L2(R) ≤ 1}.

Moreover, we assume that for any x ∈ W n
2 (R) we know a function

y ∈ L2(∆σ) such that

∥Fx− y∥L2(∆σ) ≤ δ.

The problem is to recover x(k) knowing y.
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Any method of recovery is a map m : L2(∆σ) → L2(R). The error of
such method is de�ned as follows

eσ(m) = sup
x∈Wn

2 (R), y∈L2(∆σ)
∥Fx−y∥L2(∆σ)≤δ

∥x(k) −m(y)∥L2(R).

We are interested in the value

Eσ = inf
m : L2(∆σ)→L2(R)

eσ(m),

which is called the error of optimal recovery and in the method m̂, for
which the in�num is attained that is in the method m̂ for which

Eσ = eσ(m̂).

We call this method the optimal recovery method.
Set

σ̂ =
(n
k

) 1
2(n−k)

(
2π

δ2

) 1
2n

, σ0 = min{σ, σ̂},

α̂(ξ) =

(
1 +

n

n− k

(n
k

) k
n−k

(
ξ

σ0

)2n
)−1

.

Òåîðåìà 10.

E = σk
0

√
n− k

2πn

(
k

n

) k
n−k

δ2 + σ
2(k−n)
0 .

For all α such that

|α(ξ)− α̂(ξ)| ≤

√√√√α̂2(ξ) + α̂(ξ)

((
ξ

σ0

)2(n−k)

− 1

)
,

methods

m(y)(t) =
1

2π

∫
∆σ

(iξ)kα(ξ)y(ξ)eiξt dξ

are optimal.

For a �xed error of input data consider the error of optimal recovery
Eσ as a function of σ. The larger interval (−σ, σ) we take the less error
we have. But beginning with σ̂ the error Eσ does not change.
Consequently, for σ > σ̂ the observed information becomes partially

redundant. To avoid this case the following condition

δ2σ2n ≤ 2π
(n
k

) n
n−k
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-

6

σ

Eσ

σ̂

Ðèñ. 4

should hold. This inequality may be considered as some �uncertain
principle�.
Now consider the set of optimal �lters α obtained in the previous

theorem. Let n = 2 and k = 1. Then this set is de�ned as follows∣∣∣∣α(σ0t)−
1

1 + 4t2

∣∣∣∣ ≤ t|2t2 − 1|
1 + 4t2

.

Ñëåäñòâèå 1. For all

0 ≤ σ′ ≤
(
n− k

n

) 1
2k
(
k

n

) 1
2(n−k)

σ0,

methods

m(y)(t) =
1

2π

∫
|ξ|≤σ′

(iξ)ky(ξ)eiξt dξ

+
1

2π

∫
σ′≤|ξ|≤σ0

(iξ)kα(ξ)y(ξ)eiξt dξ

are optimal.

Note that obtained methods do not smooth the input data on the
interval [−σ′, σ′].

16. Scheme of proof

It can be easily obtained the lower bound

Eσ ≥ sup
x∈Wn

2 (R)
∥Fx∥L2(∆σ)≤δ

∥x(k)∥L2(R).
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Passing to the Fourier transform and using the Plancherel theorem
we obtain the extended extremal problem with measures∫

R
ξ2k dµ(ξ) → max,

∫
∆σ

dµ(ξ) ≤ δ2

2π
,∫

R
ξ2n dµ(ξ) ≤ 1, dµ(ξ) ≥ 0.

Using the Lagrange principle we obtain that E2
σ ≥ λ1δ

2/(2π) + λ2,
where λ1 and λ2 are Lagrange multipliers.
To obtain the upper bound we have to consider methods

m(y)(t) =
1

2π

∫
∆σ

(iξ)kα(ξ)y(ξ)eiξt dξ

and to obtain the error of these methods.
For simplicity we consider the case σ = ∞. Passing to the Fourier

transform we get the following extremal problem

1

2π

∫
R
|(iξ)kFx(ξ)− (iξ)kα(ξ)y(ξ)|2 dξ → max,∫

R
|Fx(ξ)− y(ξ)|2 dξ ≤ δ2,

1

2π

∫
R
ξ2n|Fx(ξ)|2 dξ ≤ 1.

Put z = Fx− y. Then the extremal problem has the form

1

2π

∫
R
ξ2k|α(ξ)z(ξ) + (1− α(ξ))Fx(ξ)|2 dξ → max,∫

R
|z(ξ)|2 dξ ≤ δ2,

1

2π

∫
R
ξ2n|Fx(ξ)|2 dξ ≤ 1.

By the Caushy�Schwarz inequality we have

|α(ξ)z(ξ) + (1− α(ξ))Fx(ξ)|2

≤
(
α2(ξ)

λ1

+
(1− α(ξ))2

λ2ξ2n

)
(λ1|z(ξ)|2 + λ2ξ

2n|Fx(ξ)|2).

Using this inequality we obtain that

E2
σ ≤ S(α)

(
λ1

δ2

2π
+ λ2

)
,

where

S(α) = sup
ξ∈R

(
ξ2k
(
α2(ξ)

λ1

+
(1− α(ξ))2

λ2ξ2n

))
.
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For all α such that

(2) ξ2k
(
α2(ξ)

λ1

+
(1− α(ξ))2

λ2ξ2n

)
≤ 1

S(α) ≤ 1 and the upper bound coincides with the lower bound. It is
easy to show that inequality (2) is equivalent to the inequality from
the theorem.
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