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Abstract

We consider an optimal recovery problem for the k-th derivative of the function
on an interval from the information on the function itself, given in the mean
square metric. As a consequence of the solution we prove one Kolmogorov type
inequality for derivatives on an interval and demonstrate that the constant in
this inequality can be reduced by considering particular subsets of the function
class.
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Optimal recovery problem first appeared in the paper of Smolyak [1] and has
been widely developed in [2]–[5]. The problems of this kind are also considered
in [6]. Based on the general principles of extremal problems the new approach
can be found in [7] - [10], as well as some results in this area. In the papers
[11], [12] authors obtained some inequalities for derivatives and showed, that the
problem of finding the exact constants in such inequalities can be formulated
and efficiently solved as the corresponding optimal recovery problem. In this
paper we develop their approach and prove one Kolmogorov type inequality for
derivatives (originally obtained in [13] and discussed in the paragraph 5.3 of the
book [14]) as a consequence of the solution of the optimal recovery problem.
Moreover, we show that the constant in this inequality, which is accurate on
the whole class of functions, may be reduced on its subsets. We give explicit
expressions for these subsets and the corresponding constants.

Consider the space L2(ωα, [−1, 1]) of measurable functions on [−1, 1], satis-
fying condition

∥x∥L2(ωα,[−1,1]) =

(∫ 1

−1

wα(t)|x(t)|2dt
)1/2

< ∞, ωα(t) = (1− t2)α.

Denote by W r the weighted Sobolev class, consisting of functions
x ∈ L2([−1, 1]) with absolutely continuous (r − 1)-derivative on [−1, 1] and
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∥x(r)∥L2(wr,[−1,1]) ≤ 1, r ∈ N . Suppose that for a function x ∈ W r we
know an approximation g ∈ L2([−1, 1]), such that ∥x − g∥L2([−1,1]) ≤ δ,
δ > 0. On this information we want to recover the k-th derivative of x
as an element of L2(ωk, [−1, 1]), where 0 ≤ k < r. An arbitrary map
m : L2([−1, 1]) → L2(wk, [−1, 1]) is called a method m of recovery of x(k).
Define the error e(δ,m) of the method by

e(δ,m) = sup
x∈W r, g∈L2([−1,1])

∥x−g∥L2([−1,1])≤δ

∥x(k) −m(g)∥L2(wk,[−1,1]).

Next, define the error E(δ) of the optimal recovery by

E(δ) = inf
m:L2([−1,1])→L2(wk,[−1,1])

e(δ,m). (1)

The method of recovery m is optimal if the error of the optimal recovery E(δ)
is achieved by the error e(δ,m) of m, i.e. e(δ,m) = E(δ).

Consider Jacobi polynomials {Pα
l }∞l=0, α > −1, which are orthogonal on

[−1, 1] with respect to the weight (1− t2)α. It’s known ([15]), that∫ 1

−1

(1− t2)αPα
l (t)P

α
k (t)dt =

{
0, k ̸= l
22α+1

2l+2α+1
(l+α)!2

(l+2α)!l! , k = l.

We set Y α
l (t) =

√
2l+2α+1
22α+1

(l+2α)!l!

(l+α)!2
Pα
l (t) and construct an orthonormal basis

{Y α
l }∞l=0 in L2(wα, [−1, 1]), α > −1.
Consider the set of points {(xl, yl)}∞l=k, given by the formulas

xl =

{
0, k ≤ l < r,
(l+r)!
(l−r)! , l ≥ r,

yl =
(l + k)!

(l − k)!
.

Let xs < δ−2 ≤ xs+1, s ≥ r − 1 and put

λ̂1 =
ys+1 − ys
xs+1 − xs

, λ̂2 =
ysxs+1 − ys+1xs

xs+1 − xs
. (2)

Later we’ll see , that λ̂1 ≥ 0 and λ̂2 > 0.

Theorem 1. The error of the optimal recovery is given by

E(δ) =

√
λ̂1 + λ̂2δ2

and the following methods are optimal

ma(g)(t) =
r−1∑
l=k

gl

√
(l + k)!

(l − k)!
Y k
l−k(t) +

∞∑
l=r

algl

√
(l + k)!

(l − k)!
Y k
l−k(t), (3)
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where

gl =

∫ 1

−1

g(t)Y 0
l (t)dt, (4)

al =
λ̂2

λ̂1xl + λ̂2

+ ϵl

√
λ̂1λ̂2

λ̂1xl + λ̂2

√
xl

yl

√
xlλ̂1 + λ̂2 − yl, (5)

ϵl — arbitrary numbers in [−1; 1].

Proof. Consider the extremal problem

∥x(k)∥2L2(wk,[−1,1]) → max,

∥x(r)∥2L2(wr,[−1,1])) ≤ 1, ∥x∥2L2([−1,1]) ≤ δ2, (6)

which is called the dual problem to (1). Its solution gives the lower bound for
E(δ). Indeed, for an arbitrary method m

e(δ,m) = sup
x∈W r, g∈L2([−1,1])

∥x−g∥L2([−1,1])≤δ

∥m(g)− x(k)∥L2(wk,[−1,1]) ≥

≥ sup
x∈W r

∥x∥L2([−1,1])≤δ

∥m(0)− x(k)∥L2(wk,[−1,1]) ≥

≥ sup
x∈W r

∥x∥L2([−1,1])≤δ

∥m(0)− x(k)∥L2(wk,[−1,1]) + ∥ −m(0)− x(k)∥L2(wk,[−1,1])

2
≥

≥ sup
x∈W r

∥x∥L2([−1,1])≤δ

∥x(k)∥L2(wk,[−1,1]).

The inequalities are true due to the central symmetry of the set of admissible
functions. Hence

E(δ) ≥ sup
x∈W r

∥x∥L2([−1,1])≤δ

∥x(k)∥L2(wk,[−1,1]).

Consider the decomposition of x in the basis {Y 0
l }∞l=0, which has the form

x(t) =
∑∞

l=0 clY
0
l (t). We use the formula (that follows from the formula (4.5.5)

from [16])
dk

dtk
Pα
l (t) =

(2α+ l + k)!

2k(2α+ l)!
Pα+k
l−k (t)

to obtain x(k)(t) =
∑∞

l=k cl

√
(l+k)!
(l−k)!Y

k
l−k(t), which is the decomposition of x(k)

in the corresponding basis in L2(wk, [−1, 1]). The same decomposition takes
place for x(r). Denote c2l = ul and use Parseval identity to write the problem
(6) in the following form
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∑∞
l=k ul

(l+k)!
(l−k)! → max,∑∞

l=r ul
(l+r)!
(l−r)! ≤ 1,

∑∞
l=0 ul ≤ δ2, ul ≥ 0, l = 0, . . . . (7)

We write its Lagrange function, putting ul = 0, l = 0, . . . , k − 1, as these
coefficients aren’t included in the functional and thereby the second constraint
in (7) may be equivalently presented as

∑∞
l=k ul ≤ δ2.

L(u, λ1, λ2) = −λ1 − λ2δ
2 +

∞∑
l=k

ul

(
− (l + k)!

(l − k)!
+ λ2

)
+

∞∑
l=r

λ1ul
(l + r)!

(l − r)!
=

= −λ1 − λ2δ
2 +

∞∑
l=k

ul (λ1xl + λ2 − yl) , u = (0, . . . , uk, uk+1, . . . ).

If there exist Lagrange multipliers λ̂1,λ̂2 ≥ 0 and element û, admissible in (7),
that minimizes Lagrange function

min
u≥0

L(u, λ̂1, λ̂2) = L(û, λ̂1, λ̂2)

and satisfies

λ̂1

( ∞∑
l=r

ûlxl − 1

)
+ λ̂2

( ∞∑
l=0

ûl − δ2

)
= 0

(complementary slackness condition), then û brings maximum to (7). This
follows from the fact that from non–negativity of Lagrange multipliers, for all
admissible u we have the inequality

L(u, λ̂1, λ̂2) ≤ −
∞∑
l=k

ul
(l + k)!

(l − k)!
,

which implies

min
u≥0

L(u, λ̂1, λ̂2) ≤ min
u≥0∑∞

l=0 ul≤δ2∑∞
l=r ulxl≤1

−
∞∑
l=k

ul
(l + k)!

(l − k)!
.

From the fact, that û minimizes Lagrange function and satisfies the complemen-
tary slackness condition it follows, that

min
u≥0

L(u, λ̂1, λ̂2) = −
∞∑
l=k

ûl
(l + k)!

(l − k)!
.

Hence,

−
∞∑
l=k

ûl
(l + k)!

(l − k)!
≤ min

ul≥0∑∞
l=0 ul≤δ2∑∞
l=r ulxl≤1

−
∞∑
l=k

ul
(l + k)!

(l − k)!
,
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i.e. û is the solution to (7). We shall present such λ̂1,λ̂2 and û.
Consider expression (yl+1 − yl)/(xl+1 − xl), which is the slope of the line,

connecting the adjacent points of the set {(xl, yl)}∞l=r−1. It decreases with the
growth of l. For l ≥ r + 1 it’s easily verified that

yl+1 − yl
xl+1 − xl

=
yl − yl−1

xl − xl−1

l − r + 1

l − k + 1

l + k

l + r
≤ yl − yl−1

xl − xl−1

and the same holds true for l = r as well.
The fact that the slope decreases as the sequences xl and yl increase mono-

tonically to infinity implies that any line, connecting the adjacent points of the
set {(xl, yl)}∞l=r−1, is a support line to the given set, and the whole set of points

{(xl, yl)}∞l=k lies entirely below such line (for {(xl, yl)}r−2
l=k the proposition is ob-

vious). Also, there exists s ≥ r − 1, such that xs < δ−2 ≤ xs+1. Taking the

line y = λ̂1x + λ̂2 (where λ̂1, λ̂2 are defined in (2)), which connects the points

(xs, ys) and (xs+1, ys+1), we come to λ̂1xl + λ̂2 − yl ≥ 0, l ≥ k. Hence

L(u, λ̂1, λ̂2) ≥ −λ̂1 − λ̂2δ
2, ∀u ≥ 0.

Obviously, λ̂1 ≥ 0 as a slope of the line (λ̂1 = 0 in case k = 0). Also λ̂2 > 0
being a value of the line at 0, which is bigger, than yl > 0 for l = k, . . . , r − 1,
as the set {(xl, yl)}r−1

l=k (where xl = 0) lies below the line. Consider the element
û,

ûi =


0, i /∈ {s, s+ 1},
(δ2xs+1 − 1)/(xs+1 − xs), i = s,

(1− δ2xs)/(xs+1 − xs), i = s+ 1.

(8)

It’s easy to see, that û is admissible in (7), satisfies the complementary slack-

ness condition and minimizes Lagrange function, as L(û, λ̂1, λ̂2) = −λ̂1 − λ̂2δ
2.

Hence, the solution of the dual problem is equal to λ̂1 + λ̂2δ
2. And we obtain a

lower bound for the error of the optimal recovery E(δ) ≥
√

λ̂1 + λ̂2δ2.
Consider the method (3). Now we show, that its error equals to the achieved

estimate. We use the decomposition x(t) =
∑∞

l=0 clY
0
l (t) as previously.

∥x(k) −ma(g)∥2L2(wk,[−1,1]) =
r−1∑
l=k

(gl − cl)
2 (l + k)!

(l − k)!
+

∞∑
l=r

(algl − cl)
2 (l + k)!

(l − k)!

=
r−1∑
l=k

(gl − cl)
2 (l + k)!

(l − k)!
+

∞∑
l=r

(al(gl − cl) + cl(al − 1))2
(l + k)!

(l − k)!
.

Transform the second term using Cauchy-Schwarz inequality
| < x, y > | ≤ |x||y|, applied to vectors

x =

 al√
λ̂2

,
al − 1√

λ̂1

√
(l − r)!

(l + r)!

 , y =

(√
λ̂2(gl − cl),

√
λ̂1

√
(l + r)!

(l − r)!
cl

)
.
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We obtain

∥x(k) −ma(g)∥2L2(wk,[−1,1]) ≤
r−1∑
l=k

(gl − cl)
2 (l + k)!

(l − k)!
+

+

∞∑
l=r

Al

(
λ̂2(gl − cl)

2 + λ̂1
(l + r)!

(l − r)!
c2l

)
,

where

Al =

(
a2l

λ̂2

+
(al − 1)2

λ̂1

(l − r)!

(l + r)!

)
(l + k)!

(l − k)!
.

The condition (5) is equivalent to Al ≤ 1 and, as it’s shown above, we have the

inequality λ̂2 ≥ yl = (l + k)!/(l − k)!, l = k, . . . , r − 1, which leads to

∥x(k) −ma(g)∥2L2(wk,[−1,1]) ≤ λ̂2

∞∑
l=k

(gl − cl)
2 + λ̂1

∞∑
l=r

(l + r)!

(l − r)!
c2l ≤ λ̂2δ

2 + λ̂1.

Thus, we end with the proof.

We proceed to the application of the theorem to corresponding inequalities
for derivatives. For s ∈ N consider the following set

Kr
s =

{
x ∈ W r : ∥x∥L2([−1,1]) <

√
(s− r)!

(s+ r)!
∥x(r)∥L2(wr,[−1,1])

}
, s ≥ r.

Proposition 1. Let x ∈ Kr
s , then

∥x(k)∥L2(wk,[−1,1]) ≤

√
(s+ k)!

(s− k)!

(
(s− r)!

(s+ r)!

)k/2r

∥x∥1−k/r
L2[−1,1]∥x

(r)∥k/rL2(wr,[−1,1]),

0 ≤ k < r ≤ s. (9)

Proof. As it was shown before, the following equality takes place

sup
y∈W r

∥y∥L2([−1,1])≤δ

∥y(k)∥L2(wk,[−1,1]) = E(δ).

Inserting the expression for the error of the optimal recovery from Theorem 1,

we come to inequality ∥y(k)∥L2(wk,[−1,1]) ≤
√
λ̂1 + λ̂2δ2, with the constraints

∥y(r)∥L2(wr,[−1,1]) = 1, ∥y∥L2([−1,1]) = δ and xs < δ−2 ≤ xs+1. Denote by

A∗ the smallest constant A, satisfying the inequality

√
λ̂1 + λ̂2δ2 ≤ Aδ1−k/r,

when xs < δ−2 ≤ xs+1. Then, ∥y(k)∥L2(wk,[−1,1]) ≤ A∗∥y∥1−k/r
L2([−1,1]),

for ∥y(r)∥L2(wr,[−1,1]) = 1 and xs < ∥y∥−2
L2([−1,1]) ≤ xs+1. Take

y(t) = x(t)/∥x(r)∥L2(wr,[−1,1]), x ̸= 0 to obtain

∥x(k)∥L2(wk,[−1,1]) ≤ A∗∥x∥1−k/r
L2[−1,1]∥x

(r)∥k/rL2(wr,[−1,1]),
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for xs <
(
∥x(r)∥L2(wr,[−1,1])/∥x∥L2([−1,1])

)2 ≤ xs+1. As s ≥ r, the number A∗2

is a solution of the following problem of conditional extremum

(λ̂1x+ λ̂2)/x
k/r → max, xs ≤ x ≤ xs+1.

It’s easy to see, that the maximized function has the only critical point
x∗ = λ̂2k/(λ̂1(r − k)), which is a point of its global minimum, so the re-

quired maximum is attained at the ends of the interval and is equal to ys/x
k/r
s

or ys+1/x
k/r
s+1. Consider function y(x) = ((a+ x)/(a− x))

1/x
on the interval

0 ≤ x < a. Calculating the derivative, we obtain

y′(x) =

(
a+ x

a− x

)1/x−1
1

x2(a− x)2

(
(x2 − a2) ln

a+ x

a− x
+ 2ax

)
.

First two factors clearly are non-negative on the interval. The expression in the
last brackets is equal to 0 for x = 0, and its derivative 2x ln((a + x)/(a − x))
is non-negative, so the expression is increasing and hereby also nonnegative. It
follows that function y(x) is increasing on the interval 0 < x < a. Substituting
a = s+ 1, we obtain(

s+ 1 + k

s+ 1− k

)1/k

≤
(
s+ 1 + r

s+ 1− r

)1/r

, 0 < k < r < s+ 1,

or
s+ 1 + k

s+ 1− k
≤
(
s+ 1 + r

s+ 1− r

)k/r

, 0 < k < r < s+ 1,

which has the following form in our notations

ys+1/ys ≤ (xs+1/xs)
k/r

, or ys+1/x
k/r
s+1 ≤ ys/x

k/r
s , 0 < k < r < s+ 1.

Thus, A∗ =

√
ys/x

k/r
s . Since the constant A∗ decreases monotonically with

increasing of s (which is shown above), the inequality holds for all functions

x ̸= 0, such that xs <
(
∥x(r)∥L2(wr,[−1,1])/∥x∥L2([−1,1])

)2
. Substituting the

explicit expression for xs and simple transformations, we obtain the proposition
for 0 < k < r < s+ 1. For 0 = k < r < s+ 1 inequality (9) is trivial.

Note that Kr
r ⊃ Kr

r+1 ⊃ . . . and the corresponding constants in (9) are
accurate and decreasing to 1. On the set W r \Kr

r inequality of type (9) is not
true. To ensure this, it’s sufficient to consider function Y 0

k .
In paragraph 5.3 of [14] the authors present the following inequality (origi-

nally obtained in [13]) for functions x ∈ W r, for which x(t) =
∑∞

l=0 clY
0
l (t) and

cl = 0, l = k, k + 1, ..., r − 1,

∥x(k)∥L2(wk,[−1,1]) ≤

√
(r + k)!

(r − k)!

(
1

(2r)!

)k/2r

∥x∥1−k/r
L2[−1,1]∥x

(r)∥k/rL2(wr,[−1,1]).
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We consider the class of functions W r
0 = {x ∈ W r : cl = 0, l = k, k+1, ..., r−1}

and formulate a proposition similar to Theorem 1.
Let

xl =

{
0, l = r − 1,
(l+r)!
(l−r)! , l ≥ r,

yl =

{
0, l = r − 1,
(l+k)!
(l−k)! , l ≥ r.

If xs < δ−2 ≤ xs+1, s ≥ r − 1, we define λ̂1, λ̂2 by formulas (2). We will see,

that λ̂1, λ̂2 ≥ 0.

Theorem 2. Let x ∈ W r
0 , then the error of the optimal recovery is given by

E(δ) =

√
λ̂1 + λ̂2δ2.

and the following methods are optimal

ma(g)(t) =
∞∑
l=r

algl

√
(l + k)!

(l − k)!
Y k
l−k(t), (10)

where gl and al from (4),(5).

Proof. We proceed with the proof in a similar way as in Theorem 1. Lower
bound for the error of optimal recovery is given by a solution of the dual problem

∥x(k)∥2L2(wk,[−1,1]) → max, ∥x(r)∥2L2(wr,[−1,1]) ≤ 1, ∥x∥2L2([−1,1]) ≤ δ2, x ∈ W r
0 ,

which Lagrange function, after appropriate transformations and substitution
c2l = ul has the form

L(u, λ1, λ2) = −λ1 − λ2δ
2 +

∞∑
l=r

ul

(
− (l + k)!

(l − k)!
+ λ2 + λ1ul

(l + r)!

(l − r)!

)

= −λ1 − λ2δ
2 +

∞∑
l=r

ul (−yl + λ2 + λ1xl) , u = (ur, ur+1 . . . ).

As before, for l ≥ r, we can show

yl+1 − yl
xl+1 − xl

≤ yl − yl−1

xl − xl−1
.

Hence
L(u, λ̂1, λ̂2) ≥ −λ̂1 − λ̂2δ

2, ∀u ≥ 0

and element û, given in (8), if s ≥ r or û : ul =

{
0, l ̸= r,

1, l = r,
if s = r − 1, brings

the extreme value in the dual problem.
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Consider the error of the method (10). When δ−2 ≤ xr, we have λ̂2 = 0,
that leads to ma(g) = 0. Then

sup
x∈W r

0 , g∈L2([−1,1])
∥x−g∥L2([−1,1])≤δ

∥x(k) −ma(g)∥2L2(ωk,[−1,1]) ≤ sup
x∈W0

∥x(k)∥2L2(ωk,[−1,1])

= sup
x∈W r

0 ,

∥x∥L2([−1,1])≤δ

∥x(k)∥2L2(ωk,[−1,1]) = λ̂1.

In case xs < δ−2 ≤ xs+1, s ≥ r,

∥x(k) −ma(g)∥2L2(wk,[−1,1]) =
∞∑
l=r

(algl − cl)
2 (l + k)!

(l − k)!

=
∞∑
l=r

(al(gl − cl) + cl(al − 1))2
(l + k)!

(l − k)!
≤

∞∑
l=r

Al

(
λ̂2(gl − cl)

2 + λ̂1
(l + r)!

(l − r)!
c2l

)
≤ λ̂2δ

2 + λ̂1,

due to

Al =

(
a2l

λ̂2

+
(al − 1)2

λ̂1

(l − r)!

(l + r)!

)
(l + k)!

(l − k)!
≤ 1.

Proposition 2. ([14]) Let x ∈ W r
0 , then

∥x(k)∥L2(wk,[−1,1]) ≤

√
(r + k)!

(r − k)!

(
1

(2r)!

)k/2r

∥x∥1−k/r
L2[−1,1]∥x

(r)∥k/rL2(wr,[−1,1]),

0 ≤ k < r. (11)

Proof. We have the inequality

sup
y∈W r

0

∥y∥L2([−1,1])≤δ

∥y(k)∥L2(wk,[−1,1]) ≤ E(δ).

Inserting the expression for the error of the optimal recovery from Theorem

2, we obtain ∥y(k)∥L2(wk,[−1,1]) ≤
√
λ̂1 + λ̂2δ2, with the constraints y ∈ W r

0 ,

∥y(r)∥L2(wr,[−1,1]) = 1, ∥y∥L2([−1,1]) = δ. The greatest value of the error of

the optimal recovery is achieved in the case δ−2 ≤ (2r)!, when λ̂2 = 0. Then

∥y(k)∥L2(wk,[−1,1]) ≤
√
λ̂1, with constraints y ∈ W r

0 , ∥y(r)∥L2(wr,[−1,1]) = 1. De-

note by A∗ the least constant A, satisfying the inequality

√
λ̂1 ≤ Aδ1−k/r.

Substituting λ̂1 = yr/xr, we get that the smallest of these constants is

A∗ =
√

yr

x
k/r
r

or, by writing xr and yr explicitly, A∗ =
√

(r+k)!
(r−k)!

(
1

(2r)!

)k/2r
.
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We have, ∥y(k)∥L2(wk,[−1,1]) ≤ A∗∥y∥1−k/r
L2([−1,1]), for ∥y(r)∥L2(wr,[−1,1]) = 1. Let

y(t) = x(t)
∥x(r)∥L2(wr,[−1,1])

, x ̸= 0, then

∥x(k)∥L2(wk,[−1,1]) ≤ A∗∥x∥1−k/r
L2[−1,1]∥x

(r)∥k/rL2(wr,[−1,1]).

Thus, we demonstrated, that the inequality (11) is a consequence of the
solution of the problem of the optimal recovery from Theorem 2. Despite the
fact that on a broader class of functions W r the inequality of the type (11)
does not exist, we proved (9) on its subsets W r ∩ Kr

s , s ≥ r. We can now
refine the inequality (11) and show, that the constant in it can be reduced on
sets W r

0 ∩Kr
s , s ≥ r. From the fact, that the error of the optimal recovery in

Theorems 1 and 2 is the same for all δ, except for δ−2 < (2r)!, it follows, that
on sets W r

0 ∩Kr
s , s ≥ r inequalities (9) remain true. Exact constants in them

are less than constant in (11) and decrease to 1 with the growth of s.
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