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1 Setting of the problem and general theory

Let X and Y be real or complex linear spaces and z’ a linear functional on X. It is required
to recover x’ (as exactly as possible) on elements from some set (class) A C X using the
information y = Fx where F': A — Y is a linear operator which is called an information
operator. Any function ¢: F(A) — K where K = R or C we call a method of recovery of a'
on A from the information F'. The error of recovery is given by

6(1‘/,14, F,g@) = sup |<$/,$> - @(Fl’)|
z€A

The value

E(2') A, F)=infe(z', A, F, ) (1)
©

where the infimum is taken over all functions ¢: F(A) — K is called the error of optimal
recovery. Any method @ for which the infimum in (1) is attained we call an optimal recovery
method.

Examples of such recovery problems are the problem of best integration methods (it is
required to recover an integral of a function from some class using information about values
of the function and its derivatives at a fixed system of points), the problem of recovery of a
function value or a value of its derivative at some given point using information about the
Fourier coefficients, Taylor coefficients, or values of the function at some other points, etc.

The method of the solution of the optimal recovery problems which we propose in this
paper is based on the following concepts. In problem (1), for a convex and balanced set
A, among optimal methods of recovery there exists a linear method. Thus the infimum in
(1) may be taken over linear functionals on Y. In other words, the value E(x/, A, F,) is the
value of the following convex problem

sup [(¢/, ) — (¢, F'z)| — min, y €Y’
z€A
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(where Y is the algebraic dual of Y), which is dual to another convex problem (see [13,
p. 61]; here for definiteness X and Y are complex linear spaces)

Re(a’,z) — max, Faz=0, z¢€ A, (2)
which we call an associated problem to (1). Denote by
L(x, ), Ao) = Ao Re(a',x) + Re(\, Fz)

the Lagrange function of the problem (2) where Ay < 0 and A € Y’ are the Lagrange
multipliers. If there exists a solution to (2) then it follows from the general theory of
extremum that the Lagrange multipliers are connected with the solution of the dual problem,
i.e., with the optimal method of recovery. The explicit assertions are contained in the
following theorem.

Theorem 1 (the Lagrange principle for optimal recovery problems). Let X and Y
be real or complex linear spaces, A a convexr balanced subset of X, and F': X —'Y a linear
operator. Then the admissible in (2) point ¥ is a solution of this problem if and only if there
exists the Lagrange multiplier X € Y for which

min £(x, X, —1) = L(, X, 1), (3)

z€A

In this case

(2’ 2) ~ </):, Fa)

is an optimal method of recovery in (1) and
E(z', A, F) = Re(2', 7).

Proof: We use the following algebraic version of the separation theorem: Let C be a convex
subset of a real linear space X, ict C' # 0?, and xo ¢ icv C'. Then there exists 2’ € X', ' # 0,
such that

. ! > !

;2£<$ ,$> = <$ 7$0>
and (z',x) > (2, x0) for all x € icr C (see [13, p. 38]).

1. Necessity. Let & be a solution of (2). Suppose first that Re(a’,z) = 0. We show that

in this case there exists a A € Y’ such that

Re(z', z) = Re(}, F) (4)

for all @ € A. From here evidently follows (3). Note that since A is balanced Re(a’, ) = 0 for
all admissible x. Define the functional [ on the subspace F(span A) by the equality [(y) =
Re(a’, z) where # € F~!(y). This definition is well-defined. Indeed, let zy,z2 € F~(y).
Since A is balanced it is absorbing in span A and therefore there exists an o > 0 such that
a(xy — x3) € A. Tt is clear that a(x; — x2) € F7!(0) and consequently a(z; — x3) is an
admissible element in (2). Thus Re(z/, a(x1 — @2)) = 0, that is Re(a/, x1) = Re(a’, x2). It is
easy to verify that [ is a linear functional. Denote by h) any of its extensions on the all Y. It

is obvious that (4) is fulfilled with this .

Zicr C' is the set of algebraic relative interior points of C. If aff C = T + L¢ (where T € C and L¢ is a
subspace of X) is an affine hull of C| i.e., a minimal linear manifold containing C', then zg € icr C' if for any
z € L¢ there exists € = e(x) > 0 such that [zg, 2o +e2] C C.
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Assume that Re(a’,Z) # 0. Denote by Yr a real linear space of elements from Y with
multiplication only by the real numbers. Consider the set

C={(a,y) ERxYr|a=Rela,z), y=Fa, v € A}.

It is easy to see that (' is a convex balanced set and, in particular, (0,0) € icrC. It is
also easy to verify that (Re(a’,7),0) ¢ icrC. Then by the separation theorem there exist

(Mos Ar) € R x Y2 not all equal to zero such that
Doa + (e y) > hoRe(@’,3), V(ay) € C, (5)
and
Xoor + (Am,y) > Ao Re(2,7), V(a,y) € icrC. (6)
Since (0,0) € icr C it follows from (6) that Ag # 0. It is clear that (Re(2’,3),0) € C' and

o~

consequently 27 (Re(a’,7),0) € C'. Substituting this in (5) we have that 2o < Ao, that is
Ao < 0. Let us assume that A\ = —1.
Denote by A an element from Y for which

(A&, y) = Re(A, y) (7)
for ally € Y. Let 2 € A. Then

(Re(z',z), Fz) € C (8)
and we have

,C(l‘,/)\\, —1) = — Re(a',2) + Re():, Fa) ©_ Re(z',x) + </)\\R, Fa)

(5),(8) e . ~ -
— Re(2’,7) "E% —Re(a’,3) + Re(X, F7) = L(F,, —1).

2. Sufficiency. Let (3) be fulfilled and « be an admissible point in (2). Then

®3)

— Re(2',2) = —Re(a’, 2) + Re(\, Fz) > — Re(a’, %) + Re(), F7) = — Re(2/, @),

i.e., ¥ is a solution of (2).
Let us prove the second assertion of the theorem. Since A is balanced (3) may be rewritten
as follows

max |(, 2) — (X, Fz)| = Re(z', 7). (9)

z€A

Hence
E(z', A, F) < Re(z', 7). (10)

Let us show that, in fact, we have here equality. Assume x € A and F'o = 0. Since —x € A
for any method ¢ we have

2Re(r’, ) < 22, w)| = (2, ) — (0) + ¢(0) + (2, z)]

< J(a's) = £(0) + (&', =2) = (0)] £ 2 sup [(a'.) = 9(0)] < 250p |(a' ) = (P

This means that the reverse inequality to (10) holds and thus
E(z', A, F) = Re(2', 7).

It follows from this equality and (9) that N is an optimal method of recovery. m
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Remark 1 The existence of a linear optimal method of recovery in the problem (1) was
discovered for the first time by Smolyak [21] for the real case and convex centrally-symmetric
set A with dimspan F(A) < oco. The generalization of this result and corresponding literature
may be found in [12]. Dual methods for the solution of the problem (1) were used by many
authors (see [5], [14], [24], [15], [4]) but the exact connection between the problems (1) and
(2), which is that the optimal method of recovery is none other than the Lagrange multiplier
in (2), was apparently used for the first time in [13].

Remark 2 The constraints on A in (2) may be also described by a system of equalities
and/or inequalities. In this case some of them may be included in the Lagrange function
(with corresponding multipliers). But an optimal method is always the Lagrange multiplier
at the constraints related to the information operator. The proof of this fact (which is more
general only in appearance) is just the same as that of Theorem 1.

In Theorem 1 the so-called Lagrange principle for convex extremal problems with con-
straints defined by equalities and inclusions is confirmed. This principle is in the fact that
if a problem has a solution then there exist Lagrange multipliers such that this solution
is the absolute minimum of the Lagrange function on the set of the remaining constraints
(not included in the Lagrange function). In the examples below we use this principle as an
heuristic method. Namely, using equality (3) we extract the information about what ¥ and
X must be to satisfy the equality (3). After that we use the sufficiency of this condition and
find the solution of (2) and the optimal recovery method. Sometimes, instead of using the
sufficiency, it is easy to verify the optimality of the obtained method directly.

In the next section using Theorem 1 we prove a general result about the optimal recov-
ery of functions from classes defined by the convolution with some kernels on the basis of
information about Fourier coefficients. In Section 3 we apply this result to classes defined by
the convolution with cyclic variation diminishing kernels. We list there several well-known
results which are particular cases of the considered problem.

In Section 4 using Theorem 1 we obtain optimal recovery algorithms for Hardy classes.
These results are known, but we point them out in order to demonstrate the general method
from Theorem 1. In Sections 5 and 6 we obtain some new results related to optimal recovery
methods from Hardy—Sobolev classes.

2 Optimal recovery of function values from Fourier co-
efficients

Let r € Nand 1 < p < oo. Denote by W/ (T) the Sobolev class of functions x(-) defined
on the unit circle T (realized as the interval [—m, 7] with identified endpoints) whose the

(r — 1)st derivative is absolutely continuous and H:I;(”)(-)HLP(T) < 1. In 1936 Favard proved
that for all n € N and for all functions x(-) € W (T) such that

/x(t)cosktdt:/x(t)sinktdt:(), E=0,1,...,n—1,
T T

the following exact inequality

K.
leCllom < (11)

IA



holds. The numbers K, (known as the Favard constants) are defined by

4= (—=1)70HD
Ki=—Y —~——  recZ,.
™ i=o (27 + 1)+ "

Note that the case when n = r = 1 was previously considered by H. Bohr and therefore
(11) is usually called the Bohr—Favard inequality.

It is obvious that the problem of the exact constant in (11) is equivalent (in view of
shift-invariance of the norm) to the following:

J}(O) — max, ag= ... = Qp_1 = bl =...= bn—l = 0, x() & W(:O(T),

where ag, ... ,b,—1 are the Fourier coefficients of «(-). This problem has the form (2) and
hence it relates to the optimal recovery problem of a function value at the point 0 on the
class W7 (T) from Fourier coefficients. The same problem is closely related to the problem
of deviation of the class W (T) from the space of trigonometric polynomials 7,,_; of degree
at most n — 1. Beginning from the Favard’s result a lot of papers were devoted to these
subjects.

The recovery problem of a function value at some given point from the Fourier coefficients
on the class defined as the convolution of a real kernel K'(-) with functions from the unit ball
of L,(T) involves many particular cases. More precisely, let K(-) € L,(T) (1/p+1/p' =1)
and

1 1
ap = — / K(t)cosktdt, ké€Zy, [Or= - / K(t)sinktdt, k€N,
T T

s

be the Fourier coefficients of K (-). Assume that af 4+ 87 # 0 (8o = 0) with the exception of
a finite (possibly empty) set Q C Z,. Set Ty = span{cos kt,sinkt, k € @} and

WET,Q) = {a() [ a() = y()+ /Tm-—t)u(t) dt, y(-) € T, ul) €75, u(-) € Ly(T) },

s

where 72; is the annihilator of Tg. It is clear that W;"(T, () is a subspace of the space C'(T)
of continuous functions on T. The corresponding convolution class is the set

WHT, Q) = {z() e W (T, Q) | [lu()llz,(r) < 1}.
For instance, in the case of the Sobolev class W) (T) we have Q = {0}, K(-) = B,(:)

where

B(1) = Z Cos(ktl; mr/2)
k=1
is the Bernoulli kernel.
Consider the problem of optimal recovery of a function x(-) at a point # € T on the class
Wpl"'(T, @) from the Fourier coefficients

ap = l/:Jc(i‘)cosktalt, E=0,1,...,n—1, b= —/x(t)cosktdt, E=1,...,n—1.
TJr TJr
In accordance with the general notation we have X = Wf(T,Q), A= W;"(T,Q), Y =
R?"~! Fa(-) = Four, 2(-) = (ag, a1, ... yan_1,b1,... ,b,_1), and {2/, 2(-)) = x(9).
Note that if {0,1,...,n —1}\ @ # (), then it is easy to check that the error of optimal
recovery equals 400 and hence any method is optimal. Therefore we assume that @) C

{0,1,...,n—1}. Put @' ={0,1,... ,n—1}\ Q.
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For a normed linear space X, € X, and a nonempty subset A of X denote by d(z, A, X)
the deviation from = to A in the metric of X.

We say that a function K'(-) € L(T) satisfies the Favard ~v-property (for a fixed n € N)
if there exists a polynomial ¢(-) € 7,—1 and a number v € [0,7/n) such that the function
(K(t) — q(t))sinn(t + v) is nonnegative or nonpositive for almost all t € T. If K(-) is a
continuous function, then ¢(-) may be found as a polynomial which interpolates K(-) at the
zeros of sinn(- + 7).

The following theorem holds.

Theorem 2 (on optimal recovery from Fourier coefficients). Let 1 < p < oo and

n

-1
(Aj cos kt + By sin kt)
k=1

~ Ao
t = —
p(t) 5t

be a polynomial of the best approximation of K(-) by T,—1 in the metric Ly(T). Then

n—1

(0) & fioao + > _(fik(0)ar + Dx(0)by),

k=1
where o = 1/2 if 0 € Q and g = Ao/(2ao) if 0 ¢ Q; [x(0) = coskl, Ux(0) = sinkf if
ke @\ {0} and
(OzkAk + ﬁkBk) cos ko + (Oszk — ﬁkAk) sin k6

T.(0) = :
o) of + 57
—~ (ﬁkAk — Oszk) cos ko + (OzkAk + ﬁkBk) sin k6
vr(0) = 2 2

ap + 5

if k€ Q' is an optimal method of recovery of x(0) on the class WpK(T,Q) from Fourier
coefficients. Moreover,

- 1
E(x(0), WNT,Q), Four,) = ;d([x’(-),ﬁ_l,Lp/(T)).
If p =00 and K(-) satisfies the Favard v-property, then

B(a(8), WE(T, Q), Four,) =

s

/ K(t)signsinn(t 4+ v)dt|.
T

Let us formulate a corollary from this theorem related to the deviation of WpK(T,Q)
from the subspace of trigonometric polynomials. Recall that for a normed linear space X
and nonempty subsets A and C' of X the value

d(C, A, X) =supd(z, A, X)
zeC
is called the deviation of C' from A in the metric X.
The value

d“(WHT, Q). oot Lp(T)) = inf sup () = Ax ()1, m),
A 2()EW(TQ)

where the infimum is taken over all linear operators A: W;"(T, Q) — Tn-1, characterizes a
best linear approximation of Wpl"'(T, () by trigonometric polynomials from 7,,—1. An operator
A for which the infimum is attained is called an extremal method.

Obviously,

AW (T, Q) o, Ly(T)) < dX(WE(T,Q), T, Ly(T)).



Corollary 1 [f K(-) satisfies the Favard vy-property, then
d(WE(T,Q), T,-1,C(T)) = d" (WE(T, Q), To-1,C(T)) = E(2(0), WE(T, Q), Four,)

and the opemtorK which associates x(-) € WE(T, Q) with the polynomial

n—1
fioao + > _(7ik(0)ar + Dx(0)be)
k=1

s extremal.

Proof of Theorem 2: The problem associated with the considered problem of the optimal
recovery has the form

z(0) - max, ag=...=a,1=b=...=b,_1 =0, ()€ WpK(T). (12)

Its Lagrange function is

L(2()y oy i1y« -+ s 151y -« s Vn—1,A0) = Aoz (6) + @/x(t) dt
T

s

n—1
1
+ — /(Mk cos kt + v sinkt)x(t)dt, (13)
™ T
k=0
where Ao, pr, E=0,1... ,;n—1,and v, k =1,... ,n — 1, are the Lagrange multipliers.
Further we argue heuristically. Namely, we set \g = —1 and use the Lagrange principle

formally. It allows us to understand how the solution of (12) is organized and what form
the Lagrange multipliers have (which determine an optimal method of recovery according to
Theorem 1). After that we use the sufficient conditions of Theorem 1.

Let Z(-) be a solution of the problem (12). Then (according to the Lagrange principle)

there exist such numbers g, k = 0,1... ,n — 1, and 7y, k = 1,... ,n — 1, that the func-
tion L£(x(+), Hos fi1s - -+ s fin—1,1, -+ ,Un_1,—1) attains its absolute minimum on W/ (T) at the

point Z(+) (for simplicity we do not indicate that ji, and 7 depend on ).

For definiteness we assume that 0 € (). Substitute in £ instead of x(-) its representation
in terms of u(-) and

y(-) = + Z (vyk cos kt + O sin kt)
keQ\{0}

(the coefficients v and d), are uniquely determined by x(-) since they are the corresponding
Fourier coefficients of x(-)). Denote by 7o, Yk, ok, & € @ \ {0}, and u(-) the coefficients and
the function which correspond to Z(-). By means of simple calculations we obtain that the
function

— Y0 — Z (& cos kO + 0y, sin k0) + 2[igyo + Z (Kkve + Vidk)

keQ\{0} keQ\{0}
1 ~ ~ ~ ~ .
+ - / (—K(@ — 1)+ Z ((Frok + Uk Br) cos kt + (Dpay — [ Fk) sin kt))u(t) dt (14)
T keQ’

attains its absolute minimum on the set

T sin kt

1 cos kt
o505 € R, —/u(t) =0, keQ, [u()llnm <1 (15)
T



at the point ({%fy\k,gk}keQ\{o},ﬁ(-)). Hence fip = 1/2 and [y = coskl, U = sinkb, k €
Q\ {0}

The problem (14)—(15) is a problem of type (12) (the minimization of a linear functional
on a convex balanced set). Its Lagrange function may be written obviously (we set the
multiplier at the minimizing functional equals 1 and do not include the last constraint in
(15)). Then according to the Lagrange principle there exist such ¢, ¢k, dg, k € @\ {0}, that
the function

1 —
- / (—K(@ —t)+ ¢+ Z (¢k, cos kt + d, sin kt)
T

s

keQ\{0}
+ Z ((ﬁkozk + I//\kﬁk) cos kt + (I//\kOék — ﬁkﬁk) sin kt)) u(t) dt (16)
ke’

attains the absolute minimum on the unite ball of L,(T) at the point u(-). If we denote by
L(-) the multiplier preceding u(-) under the integral sign, then it is clear that

a() = =Lz fom LOP ™ sign L(-).

Note that u(-) € 7;{1 It follows from (15) (when & € @) and the fact that for k € @',
ai + 32 # 0 and therefore the vanishing of Fourier coefficients of Z(-) implies the vanishing
of corresponding Fourier coefficients of @(-). Then in accordance with the criterion of the
best approximation in L,(T) we obtain that the polynomial

Bty =0+ Y (Grcoskt +dysinkt) + Y ((fiwox + D3 cos kt + (Dpa — fiBy) sin kt)
EeQ\{0} keQ’

must be the best approximation polynomial for the function ¢ — K (6 — t) by the subspace
Tn-1 in the metric L,(T).

Now we shall apply sufficient conditions. Let p(-) be the polynomial mentioned in the
statement of the theorem. Then p(§ — -) is the polynomial of the best approximation of
K(6—") by the subspace T,_; in the metric L, (T). Choose multipliers ¢y, ¢, c/l\k, ke Q\{0},
and fig, Uk, k € Q', so that p(-) = p(f# — -). We obtain just the same formulae for these
coefficients which are given in the theorem. With these Lagrange multipliers the polynomial
p(+) is in fact the polynomial of the best approximation of K(-) by the subspace T,,_; in the
metric L, (T). From the criterion of the best approximation it follows that the function

() = = LO g fomy | L) sign L(-),

where E() is L(-) with just defined Lagrange multiplier, is orthogonal to T,_; and evidently
|u(-)||z,ry = 1. Hence u(-) is admissible in (15). Put 7, = 7 = ;S\k =0, up = 1/2,
fr = coskf, and 7y = sinkf, k& € Q \ {0}. Then since u(-) is a solution of (16) (with
corresponding multipliers) by Theorem 1 the point ({:Y\o,:y\k,gk}kecg\{o},ﬁ(')) is a solution of
the problem (14)—(15). This is equivalent to the fact that the function

@@:lAqum@w

s

y(-) = 0 since AO = Ak = S\k =0 k - 0 ives the minimum Of the Lagrange fUHCtiOH

) g v ) g grang

13 With )\0 = —1 and Lagrange ultipliers de ed ELbOVG. Sl ce ﬁ .)€ ; J; 5 by the same
g g n—1
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arguments as above the Fourier coefficients of Z(-) vanish for k € )" and it means that Z(-)
is admissible in (12). Then by Theorem 1 it is a solution of this problem and the Lagrange
multipliers define an optimal method. The case when 0 € ) is considered analogously. The
first part of the theorem is proved.

Further,
z(0) = %/TK(@ — Hu(t)dt = %/T(K(@ —t)—p(0 —t))u(t)dt

LUK (). T L(T)),

s

Lo ~
= —[[K(C) = PO)lEym)

that is the quantity in the right-hand side is the value of the problem (12). Hence and from
Theorem 1 the second assertion of the theorem follows.
Let p = oo and K(-) satisfies the Favard y-property. Put

u(t) = sign(K () — q(1)),
where ¢(-) is from the definition of the Favard ~-property. Then
u(t) = esignsinn(t++v), e=1lor —1,

almost everywhere. Since it is clear that u(-) € 7;{1, from the criterion of the best approx-
imation it follows that g(-) is the best approximation polynomial of K(-) by the subspace
Tn-1 in the metric L;(T). Consequently,

d(K (), Trt, Li(T)) = /T K (t) — q(t)|dt = /T(K(t) — §(t)) signsinn(t + ~)dt

/ K(t)signsinn(t 4+ v)dt|.
T

Together with the previous equality this proves the last assertion of the theorem. m
Proof of Corollary 1: The upper bound. Set

K =

/ K (t)signsinn(t 4+ v) dt‘ :
T
Let z(-) € Wpl"'(T, (). Then taking into account the last assertion of Theorem 2 we have

|(+) — KQ?(‘)HO(T) = max |z(0) — Kx(0)| < max F(x(0), WpK(T, @), Four,) = %

eT 6eT

Hence ) , .
dL(WoI; (T,Q), Tn-1,C(T)) < E(x(0), Wolé (T,Q), Four,) = —
T
The lower bound. Consider the function
1
() = — / K(- — 7)signsinn(t — v) dr.
T

s

Clearly, 7(-) € WE(T, Q). This function may be rewritten as follows

1
Z(t) = — / K(r)signsinn(r +~v —t)dr.
T

s

9



It is easily seen that

k —1)*
T (—W> = (=1) /K(T) signsinn(r + ) dr = 5(—1)’“5, e=1lor —1,
T

n T T

and in view of the fact that [#(¢)| < x/7 the function Z(-) has 2n-alternance on the pe-
riod. By the Chebyshev alternance theorem the trivial polynomial is its best approximation
polynomial by the subspace 7,,—1 in C'(T). Therefore,

K

AWE(T, Q) Ty, C(T)) > d(z (), Ty, O(T)) = 7 lemy = = m

3 Cyclic variation diminishing kernels

Denote by K(Q) the set of kernels K(-) € Li(T) for which for all y(-) € T and all u(-) €
Loo(T) such that u(-) L 7o and u(-) # 0 the inequality

S(y() + (K x2)()) < S(u(-))

holds, where S(u(-)) is the number of sign changes of u(-) on the period and

m»WQZEAK@4W@ﬁ

s

For a function u(-) € C(T) denote by dist u(-) the length of the largest subinterval of T
containing no zeros of u(-). Denote by K(Q, ¢) the class of kernels K(-) € L{(T) for which for
all u(+) € Loo(T) and y(-) € Tg such that u(-) LTg, u(-) # 0, and dist(y(-) + (K *u)(:)) < ¢
the inequality

S(y() + (K xu)(-)) < Su(-))

holds, and moreover, if (K *u)(-) € C*(T), then

Zo(y () + (K xu)(-)) < S(ul-)),

where Z3(u(-)) is the number of zeros of u(-) when multiple zeros are counted twice and
intervals on which the function vanishes identically are discarded. Assume as before that

ai + 88 #£0, k ¢ Q, where oy and 3 are the Fourier coefficients of K'(-).
Suppose that

[X7j(') S IC(Q]‘,(S]‘), .] = 17' . 7k7 [(0(') S IC(QO) (17)
Set
k
K(-) = (Kip#...% Ky % Ko)(-), Q:UQﬁazggﬁ. (18)

Consider some particular cases of the classes WX (T, Q) for such kernels.
1. Let K =0, Qo = 0. The kernels from the set K(0) are called cyclic variation dimin-
ishing kernels or C'V D-kernels. The corresponding classes

Wa(T,0) = {2() | 2() = (K *u)(), u()l|zom <13

10



were studied in [20]. In particular, the kernel

cos mt
K = —
Calt + Z coshmp

is a C'V D-kernel and the corresponding class WiB(T,@) coincides with the class 22 which
is the set of real, 2m-periodic functions f(-) that can be analytically continued to the strip
Ss={z€ C||Imz| <} so that |Re f(z)| <1 in this strip.

2. Let P(D) be a differential polynomial of degree r with constant real coefficients

d
P(D)y=D"+a,_ D" ' +...+ay, D= e
Set -
1 ezm
Kp(lt) = = .
=5 2 P(im)
meEZ
P(im)#0

For Q = {m € Z, | P(im) = 0} the class WP (T, Q) coincides with the generalized
Sobolev class which is the set of 2m-periodic functions x(-) with (r —1)st derivative absolutely
continuous and satisfying the condition

[(P(D)2) ([ Loe(r) < 1.

In particular, for P(D) = D" this class coincides with the standard Sobolev class W (T).
In the general case a polynomial P(D) can be represented in the following form

P(D) =[] Pi(D). (19)
where P;(D) are differential polynomials with real coefficients of degrees at most 2. It follows
from [16] that Kp (-) € K(Q;,9;) where

Qi ={meZy|Piim)=0}, & =na/h(Pi(-)), (20)

and h(P;(-)) is the largest imaginary part of the zeros of the polynomial P;(-).

3. For a differential polynomial P(D) with real coefficients let hP be the class of
2m-periodic real-valued functions f(-) that can be analytically Contmued to the strip Sp
satisfying the condition |Re(P(D)f)(z)| <1 for all z € Sz. Then hfoﬁ = WE#(T, Q) where
(using the notation (19), (20))

Kp(-)=(Kp, *...x Kp, « K5)(-), Q= U Q.
Set
hn(t) := signsinnt.
Lemma 1 Assume that a kernel K(-) satisfies (17) and (18). Then for all

n > max{supj, 27/d } (21)
i€Q

K (-) satisfies the Favard ~-property where v defined by the condition
(K xhn)(v) = =[[(K % 2 ) ()| e ()- (22)

11



Proof: Consider the problem of optimal recovery of x(-) at the zero on the class Wpl"'(T, Q)
from the Fourier coefficients of this function ag,... ,a,_1,b1,... ,b,_1. The associated prob-
lem has the form

2(0) > max, ap=...=a,1=b=...=b,_1 =0, ()€ WOI;(T,Q)

It follows from [19] that under the conditions (21), (22) the function (K * h,)(- — ) is a
solution of this problem. Assume for definiteness that 0 € (. Similarly to the proof of
Theorem 2 we obtain that there exist ¢, dp, k € @Q, and jiy, x, kK € Q', such that the
function

& / (—K(—t)—l—a)—l— Y (Grcoskt + dysinkt)
T

s
keQ\{0}

+ > (ke + DiBr) cos kit + (Do — figf3y) sin kt)) u(t) dt
ke@’

attains the absolute minimum on the unit ball of L. (T) at the point u(-) = h,(- + 7).
Denoting by L(-) the multiplier preceeding u(-) under the integral sign we obtain that u(-) =
—sign L(-). Changing the variable t on —t we get the existence of polynomial P(-) € T,_4
such that sign(K () — P(t)) = —h.(t +7). m

Thus for the classes WX(T, Q) with kernels K(-) satisfying the conditions (17) and (18)
the assertions of Theorem 2 (for p = co) and Corollary 1 hold.

We list several well-known results which are particular cases of the assertions proved
here. The inequality (11) obtained by Favard [7] was used in [8] (and also independently by
Akhiezer and M. Krein [3]) to prove the equality

K.
AW (T), Tn1, C(T)) = —, rel. (23)

nT’

The class W (T) is defined by the convolution with the Bernoulli kernel which satisfies the
Favard ~y-property for v = 0 if r is odd and v = 7/(2n) if r is even. For this class the

problem of optimal recovery from Fourier coefficients was solved by Bojanov [5] who proved
that

K.

E(x(0),W.(T), Four,) =

n"
The result of Favard—Akhiezer—Krein (23) was developed in several directions. Partially
this was elucidated in [1]. Note the own result of Akhiezer [2]

R (="
(RS, Tner, C(T)) = p mz:: (2m + 1) cosh(2m + 1)ng

0

and M. Krein [11]
4
d(I'?_, Tuo1,C(T)) = — arctan p",
T
where ' is the class of functions x(-) represented in the form z(-) = u(p,-), 0 < p < 1,

with functions u(r,t), 0 <r < 1, ¢t € T, harmonic in the unit ball and satisfying there the
condition |u(r,t)| < 1. The class I'”_ coincides with the class Wo]zp(T, () where

1 1 — p?
21 —=2pcost—+ p?

Pp(t) =

12



is the Poisson kernel which satisfies the Favard 7 /(2n)-property.

The problem of generalization of the Favard—Akhiezer—Krein result for fractional r was
open for a long time. This problem was solved by Dzyadyk [6] and Sun Yongsheng [22],
[23]. It turns out that the Bernoulli kernel with fractional r > 1 also satisfies the Favard
~-property with v defined by the condition

=0.

i cos((2m + 1)y — 7r/2)
(2m 4+ 1)

m=0

The following result holds:

4

mn"

i sin((2m 4+ 1)y — 7r/2) ‘

d(W;(T),ﬁ_l, C(T)) = (2m + 1)7’

m=0

4 The Hardy spaces

Now we consider optimal recovery problems for classes of analytic functions. First we give
some definitions. Denote by H,(D), 1 < p < oo, the Hardy space, i.e., the set of functions
f(+) analytic in the unit disk D = {z € C | |z| < 1} and satisfying

1

sup 5 |f(re )|pdt:Ag<oo, 1 <p< oo,
0<r<1

suplf( )| = As <00, p=oc0

z€D

Every function f(-) € H,(D) associates with the unique function f() € L,(0D) (0D is the
boundary of D) by the rule:

f(e“) = lim f (re )

r—1

for almost all ¢. Moreover, Hf(‘)HLp(aD) = A, and for all z € D the Cauchy formula

f(k)(z):k—!,/aD(gf(%dg, keZy, (24)

27

holds.
The subset of L,(0D) that consists of all such functions f() is the set of those functions
from L,(0D) for which

1

2m

f(C)C’“ d¢ =0, kel (25)

For simplicity we shall use the same notation for f(-) € H,(D) and its boundary values.

The set
Hy(D) ={f(-) € Hp(D) [ | f)ll,0m) < 1}

we call the Hardy class.
We consider the following recovery problem: recover a value of f(-) at a point 7 € D on
the Hardy class H,(D) from the information

f(z1), f'(z1), - ,f(kl_l)(zl), co f(z0), f1(20),y - - ,f(k"_l)(zn),

13



where 21, ... , z, are distinct points from the disk D. We are interested in an optimal method
of recovery.

In accordance with the general notation here X = H,(D), Y = CY, N =k + ...+ k,,
Re(z', f(-)) = Re f(7), A= H,(D),and F': A — CV,

FFC) = (£ F0se s fO0 G0 FGa) G, F570(20)
The associated problem has the form
Re f(7) — max, f(k)(zj) =0,5=1,...n, k=0,1,... ,k; — 1, f(-)€ Hy(D). (26)

In contrast to the real case where a solution of associated problem and optimal method were
obtained simultaneously, here we first find a solution of (26) directly and then use it to
obtain an optimal recovery method.

Since every function f(-) € H,(D) for which

flz1)=...= f(kl_l)(zl) =...=flz)=...= f(k"_l)(zn) =0

may be represented in the form f(z) = B(z)g(z) where g(-) € H,(D) and
y p f(z) (2)g(2) g(-) € Hy(D)

pe=11(72)

J=1

it suffices to find the extremum in the problem
Reg(t) —» max, g¢g(-) € H,(D).

Evidently, for p = oo the function g(z) = 1 is extremal. We prove that for 1 < p < oo the
function g(z) = (1 — |7|?)"/?(1 — 72)~%/? is extremal. By the residue theorem we have

_ 9O —|r|He-2r 1 g(et)(1 — |r[?)e-2/r
glr) = i /8D (¢ —7)(1 —=7F()e=2)/p d¢ = 27 Jo (1 — re-it)(1 — 7eit)e-2/r dt. — (27)

Applying the Holder inequality to the last integral we obtain that
lg(7)] < (1—[r})7'77 (28)
for all g(-) € H,(D). Moreover, it follows from (27) that
(1= 7)) = G(r) = 1GOOI, @y (L = [71)7H7.
Thus, g(-) € Hy(dD) and for this function (28) turns to equality. Consequently, the function
flz) = e = PO B(2)5(z)

is extremal in (26).
In accordance with (24) and (25) the problem (26) may be rewritten as follows

1 /(©) k! /(©)

e omi 4 o | =0, a=1
627Ti ap C— T ¢ = max, 21 J4p (g_zj)kﬂ ¢ s ] ) , 1,
1
=00k =1 o | Q=0 m e T [fO)em <1 (29)

14



It is a convex problem. We apply the Lagrange principle to it noting that the set A
(see (2)) is defined here by a countable number of equalities and one inequality. We include
the constraints of equality type in the Lagrange function by “natural” way without giving
more precise descriptions since, as it was said, we apply the Lagrange principle heuristically.
We note only that an optimal recovery method is defined by multipliers at the constraints
related to the information operator (see Remark 2).

The Lagrange function of the problem (29) is

Mkk’ im [IAPR
£- RGQ_ T(e” ZZ (eit — : k+1+z)‘ ¢ t>f(€t)€tdt,

j=1 k=0 m>0
where 5, A, € C, 1 <5< n, 0<kE<Ek;—1, m>0. By the Lagrange principle there exist
such ﬁjk,/)\\m €eC 1<7<n, 0<k<E -1, m >0, that £ attains its minimum at the
point ]/C\() on the set {f(-) € L,(dD) | ||f(*)|lz,opy < 1}. Hence it follows that for z = e
and 1 < p < oo

p—2 _ CIW
( ) CZf( )| ( )| - (Z_T)(l_FZ)(p_Q)/pv

where L(z) is the expression in parentheses under the integral sign in the Lagrange function.

Since B(z) = B™!(z) for z = e, we have

-1
k! C
Jk . 1

z—T +ZZ (z — z;)k+t +Z)\ <= B(z)(z — 7)(1 —72)-2)/p’ (31)

7=1 k=0 m>0

(30)

The function in the right-hand side of this equality is analytic in the disk D with the exception
of points 7,z1,...,z, where it has poles. If we multiply the both sides of (31) by z — 7 and
substitute z = 7, we get C; = —B(7)(1 — |7|})?=2/?_ In a similar way we obtain

_ B(r)(L— [r e (1—72)% (b=t
Hik = T8k —k— )l \w(2)(7 — 2)(1 — 72)0-2/n

b
Z=zy

where . .
Z— Zm n
se=11 (=)
m#j
We prove now that the method defined by [i; (which are well-defined for all 1 < p < oo
for p = oo all expressions involving p are understood as the limit values as p — o0) is

optimal. Indeed, for all 1 < p < oo the equality (31) holds with some /)\\m, m > 0 (we do not
need explicit expressions for them). Let 1 < p < oo. Then for all f € H,(D) taking into
account the last equality of (30) and applying the Holder inequality we obtain

0 ki—1

0= X i)

N %/ap (mezm T %zﬂzﬂﬂzﬂp‘?) f(z)d=

B(r
— ‘/f TP e “‘)dt\

(1
< A FOI Ol < 170
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For p = oo using the fact that the integral of the Poisson kernel equals 1 we have

1 C o BOO—R N
omi /aD (%Am T BEGE-n —FZ)) J(2)d

~ 1505 | [ o e ] <186 = 7o)

‘f(f) Y A

=1 k=0

T|1_F€

o~

It follows from Theorem 1 that the error of optimal recovery equals |f(7)|. Thus it is
proved that the method

is optimal. In particular, for one point z; = 0 with the multiplicity n (that is we consider
the problem of optimal recovery from Taylor coefficients at the zero) for p = oo we have

, U
fry = 3P = e 20 (32)

The optimality of these methods was obtained, without using the Lagrange principle, in [17],
[18] (p = 00), and [9] (1 < p < o0).

5 The Hardy—Sobolev spaces

For p = oo we can obtain a more general result rather than formula (32).

Denote by HZ (D) the Hardy—Sobolev class which is the set of all functions analytic in
the unit disk D for which |f)(2)] <1, z € D. Consider the problem of optimal recovery of
f(-) € HL(D) at a point 7 (without loss of generality we may assume that 7 € (0,1)) from
the information f(0), f/(0),..., f+ =1(0).

From the equality

z (. =1 =1 k(g
z
1) = s+ | E= g de, s =S L0
o (r—=1) k!
k=0
and the Cauchy formula for f0)(£) we have
1 - k! k4r —ikt £(r)( it
f(z):S,,_l(Z)—l—g Z(k—l—r)'z e MU (e) dt. (33)
T k=0 )
Thus the associated problem can be written as follows
Re | S,—i(7) + L i i TR () dt | — max
-l 27 I — (k+r)! ’
! . .
f0)y=...=fr=10) =0, f—‘/f““)(e“)e—““ dt=0k=0,...,n—1,
™ Jr

1 . .
o / FOE ™ dt =0, m e N, | FO) pom) < 1.
2m T

16



We prove that the function
!
.

iy — n4r
is extremal in this problem. Assume that there exists a function fo(-) € H’ (D) for which
fo(0) = ... = f+=1(0) = 0 and | fo(7)| > f(7). Without loss of generality we may assume

that fo(r) > 0. Since

NERCEY 0

has the same properties as fo(-) and is real on the real axis, we assume from the very

beginning that the function ]/C\() is real on the real axis. Put

Ple) = Fe) = pfile), o= 140,

The function F(-) has at least n + r + 1 zeros on the interval (—1,1) taking into account
multiplicities. Consequently, by Rolle’s theorem F()(-) has at least n + 1 zeros on this
interval. For z € 9D we have

1FD () = FO@) = plf () <p < 1= [FO(2)].

Since J/C\(T)(-) has exactly n zeros in D (counting multiplicities) Rouche’s theorem implies that
the function FU)(-) must have the same number of zeros. This contradiction proves that the

function ]/C\() is extremal.
Now let us write out the Lagrange function of the considered problem

r—1
L = Re (—S,,_l(r) + Z/,ka(k) 0
1 = k! k—l—r —ikt Tkt (r)( it
—|—§ Z(k—l—r) ‘|‘Z/~Lk+rk'€ —I—Z)\ e ) ey dt ),
T

m=1

where pig, A, € C, 0 <k <n+r—1,m €N According to the Lagrange principle there
exist such fig, A, € C that £ attains its minimum at the point f(-) on the set of functions
for which Hf(r)(‘)HLoo(aD) <1.

Clearly,

ﬁk:Hrk, E=0,...,r—1.

Denoting by L(-) the expression in parentheses under the integral sign we have

L(e") = — fO(et)| L(e")].

Consider the Fourier-series expansion of |L(e")|

o0

|L(€it)|: Z akeikt‘

k=—c0

Taking into account the fact that it is a real function we have a_; = @;. Thus
~1

— i i ffl—'r !Tk-l—re—ikt n Z o klemiht 4 i Ne
k=0 k=0 m=1
— it (ao n iakeikt n iake—ikt> ‘
k=1

17



Consequently,

(n+k+r) 7
n—Fk ~
ap = MT . —(n =k pptr, k=1,... 0
Hence we obtain
R B Fmtr . (m + T)’ (2n — m)' 2(n—m)
Hngr = (m_l_r)[ m! (Qn—m—l—r)’T '

By the direct verification (similar to the case described above) it can be proved that the
method

r—1

fir) =

[P0 NS B Coar=R o) £700) 4
11— nrr - 4
woT ; G—rizns2—k) " moT B4

k=0
is optimal.

Thus we have proved the following theorem.

Theorem 3 (on optimal recovery from Taylor coefficients). Let r € Zy, n € Z, and
7 € D. Then the method (34) is optimal method of recovery on the class W H.,(D) from
the information

Tay,i, f(-) = (f(0), f'(0),.... fOF=D(0)).

Moreover,
n!

(n+r)!
For r =1 this result was obtained by Newman (see [14, p. 42]).

E(f(r),W"He, Tay,, ) =

|7_|n—|—7"

6 Optimal recovery from the values at the equidistant
system of points on a circle

Consider now the problem of optimal recovery of a value f(7), f(-) € HL (D), 7 € D, from
the values f(7;), 7 =0,... ,n—1, where {7;} is the system of equidistant points on the circle
of the radius 0 < p < 1: 7; = pe?™/", From [10] it follows that the function

N e pn

f(Z) = = - 7 e = e—iarg(q—n_pn)7

is extremal in the associated problem
Re f(1) » max, f(r;)=0, j=0,...,n—1, f¢€ WlHOO(D).

In view of (33) this problem may be rewritten as follows

Re (100 o [ Tty ar) -
e o Tk:ok_l_le e max,
7_]k-|-1

1 - ] —ikt gty it o .
f(0)+27r/zk—|—1e fle)ydt=0,5=0,...,n—1,

T k=0

1 .
3= [ £ =0, m e N, Claion < 1
TJr

18



The Lagrange function of this problem is

-1 00
—zkt —zkt zt
( k -I- 1€ + Z A€ ) )dt)

=0

where 15 A €C, 0 <3 <n—1,m e N. According to the Lagrange principle there exist

such fi;, )\ € C that £ attains its minimum at the point f( ) on the set of functions for

which [[7/(-)]z..am) < 1.
It is clear that

3
|
—_

=
I
—

Il
=]

J

Denoting by L(-) the expression in parentheses under the integral sign we have

L(e") = = fi(e)| L(e").

Consider the Fourier-series expansion of |L(e")|

o0

|L(€it)|: Z akeikt‘

k=—c0

Taking into account the fact that it is a real function we have a_; = @;. Thus

0 0 0 0
662(71—1)7,‘ § Vke—zkt . § )\m ezmt = ap + § akezkt 4 § Eke_lkt,
k=0 m=1 k=1 k=1

eskoe-Ea)

7=0

where

Hence ap = cvp_p1, @ = Vpyp_1, k=1,... ,n—1.
Assume for simplicity that 7 € (=1,1). Put o = 7/p. Then

1 n—1 ka n—1 "
n—k n+k ~F
] =0 ]:O

where & = €727/" j =0,... ,n — 1. Putting

n—1
b= 6"
7=0

we have

n—1 _ n—1 _ _

Ay j( ])—(n—k) = b

7=0 7=0

Thus we obtain the system
1 L p2k
kb)) = (o™ — b, _ k=1,...,n—1
n—k(a k) n—l—k(a k)v ) s



Hence

1 bk p2k _ . an—k an+k ka
n—k n+k " n—k n+k" "’
p2(n—k) b, l_ . a2n—k 2nk) a_k
2n — k ET 2n — k k
Consequently,
n—kl_ n o 2n\ k2k1_n
bk:a (1 — gra”p™) };kap( 04)7 E=1,...,n—1,
L —qrp™
where
B n—=k B k

Since by = 1 we have

n—1
. 1 ‘
i = ;_0 bi&j-

As above, the direct verification leads to the fact that the method

is optimal for the considered problem.
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